Введение 3
ГЛАВА 1. Теоретические основы изучения координатно-векторного метода 5
1.1 Векторы в пространстве 5
1.2 Координаты точки и вектора в пространстве 9
1.3 Аналитическое задание фигур в пространстве 11
ГЛАВА 2. Методические аспекты применения координатно-векторного метода для решения стереометрических задач 19
2.1 Общие положения изучения координатно-векторного метода и анализ
содержания учебного материала в школьных учебниках геометрии 19
2.2 Методика решения стереометрических задач координатно-векторным
методом 25
2.3 Методические рекомендации по изучению координатно-векторного
метода 33
ГЛАВА 3. Опытно-экспериментальная работа по применению координатно-векторного метода решения задач в курсе стереометрии 40
3.1 Планирование и организация опытно-экспериментальной работы 40
3.2 Сравнительный анализ результатов педагогического эксперимента 60
Заключение 63
Список литературы 65
ПРИЛОЖЕНИЯ 68
Стереометрия является наиболее сложной для изучения частью геометрии. Обучающимся тяжело представлять пространственные фигуры, они привыкли иметь дело с плоскостными фигурами. В связи с чем у них теряется интерес к предмету, возникают трудности при решении стереометрических задач.
Известно несколько методов решения геометрических задач. Первый, классический, требует отличного знания аксиом и теорем геометрии, умения строить чертежи и сводить, если это надо, объемную задачу к планиметрической.
Второй, более универсальный метод - координатно-векторный. Он предусматривает использование необходимых формул и правил. Сущность координатно-векторного метода заключается в том, что геометрическая задача переводится на язык алгебры, при этом вводится декартовая система координат, а решение задачи сводится к применению формул векторной алгебры и решению уравнений. Координатно-векторный метод можно применять при решении большого количества аффинных и метрических задач
Актуальность темы исследования объясняется тем, что в школьном курсе геометрии не вполне достаточно уделено внимание применению координатно-векторных приемов при решении задач. Необходима хорошо разработанная методика применения этого метода, позволяющая учащимся довольно легко решать разнообразные задачи.
Исходя из вышесказанного, проблема исследования состоит в следующем: Каковы методические особенности применения координатно-векторного метода при решении стереометрических задач?
Объектом исследования является процесс обучения геометрии в курсе старшей школы.
Предмет - координатно-векторный метод при решении стереометрических задач.
На основании актуальности исследуемой проблемы определена цель исследовательской работы - выявить эффективность применения координатно-векторного метода при решении стереометрических задач.
В соответствии с проблемой, объектом, целью были намечены следующие задачи исследования:
1. Проанализировать учебную и научно-методическую литературу в соответствии с проблемой исследования.
2. Провести методический анализ теоретического, задачного материала темы.
3. Изучить методические рекомендации ученых-педагогов по применению координатно-векторного метода при решении стереометрических задач.
4. Провести опытно-экспериментальную работу по выявлению
эффективности координатно-векторного метода при решении стереометрических задач.
Гипотеза исследования: если научиться применять на практике координатно-векторный метод, то это позволит решать стереометрические задачи повышенного уровня сложности.
Практическая значимость заключается в том, что в данной работе составлены методические рекомендации по изучению указанной темы, разработаны уроки и проверочные задания, которые могут быть полезными при изучении темы «Метод координат», при проведении элективных курсов по математике.
Методы исследования: поисковый, исследовательский, практический.
Работа состоит из введения, трех глав, заключения, списка использованной литературы и приложений.
Цели и задачи, поставленные в работе, выполнены.
Изучены основные методические особенности обучения координатно - векторному методу; проанализирована учебная и научная литература по исследуемой теме; проведена опытно-экспериментальная работа по применению координатно-векторного метода при решении
стереометрических задач.
Проведенные исследования позволяют сделать вывод о том, что для успешного овладения учащимися координатно-векторного, необходимо обучать их умениям и действиям, входящим в состав этого метода. К умениям и действиям, составляющих суть координатно-векторного метода относятся следующие:
- умение задавать систему координат и находить координаты необходимых точек и векторов;
- умение преобразовывать векторные выражения;
- знание основных формул векторной алгебры;
- умение переводить геометрическое свойство фигуры на векторный язык и обратно.
В соответствии с этими положениями предлагаются следующие методические рекомендации по обучению учащихся координатно - векторному методу:
- показывать вывод формул, чтобы у учащихся не возникло проблем с их запоминанием;
- неоднократно повторять выведенные формулы;
- мотивировать учебную деятельность с помощью игровых заданий;
- проводить срез знаний;
- использование системы компьютерных моделей как средства обучения координатно-векторному методу.
В результате анализа опытно-экспериментальной работы, нами были выявлены основные преимущества координатно-векторного метода:
1) избавляет от необходимости прибегать к наглядному представлению сложных пространственных конфигураций;
2) помогает упростить процесс и ход решения задачи;
3) позволяет решать задачи повышенной сложности (аффинные, метрические задачи);
4) показывает тесную связь алгебры и геометрии;
5) является основой для изучения курса аналитической геометрии.
Подводя итог исследованию, нами сделан вывод о том, что координатно-векторный метод - это один из самых эффективных и универсальных способов решения стереометрических задач, и является необходимой составляющей при изучении геометрии в школе.