Методы оценки кредитных рисков инвестиционных проектов
|
ВВЕДЕНИЕ 4
Глава 1 СИСТЕМАТИЗАЦИЯ МЕТОДОВ И МОДЕЛЕЙ ОЦЕНКИ КРЕДИТНОГО РИСКА ИНВЕСТИЦИОННЫХ ПРОЕКТОВ 14
1.1 Структурирование рисков проектного финансирования 14
1.2 Классификация методов оценки кредитного риска инвестиционных проектов 23
1.3 Практические особенности использования моделей оценки кредитного риска по инвестиционным проектам в российской и зарубежной практике 37
Глава 2 РАЗВИТИЕ МЕТОДОВ И РЕЙТИНГОВЫХ МОДЕЛЕЙ ДЛЯ ОЦЕНКИ ИНВЕСТИЦИОННЫХ ПРОЕКТОВ 42
2.1 Оценка вероятности дефолта с использованием модели бинарного выбора 42
2.2 Оценка вероятности дефолта с использованием модели множественного выбора 72
2.3 Формирование рейтингов кредитоспособности инвестиционных проектов 89
Глава 3 ВАЛИДАЦИЯ И ПОВЫШЕНИЕ ПРОГНОЗНЫХ СПОСОБНОСТЕЙ МОДЕЛЕЙ 101
3.1 Практическая валидация разработанных рейтинговых моделей ... 101
3.2 Повышение прогнозных способностей моделей за счет макроэкономических риск-факторов 109
3.3 Дополнительные возможности повышения качества и проверки рейтинговых моделей инвестиционных проектов 131
ЗАКЛЮЧЕНИЕ 141
3
СПИСОК ЛИТЕРАТУРЫ 143
ПРИЛОЖЕНИЕ А. Алгоритмы расчета риск-факторов на основании данных российской финансовой отчетности 157
ПРИЛОЖЕНИЕ Б. Дополнительная информация по моделям бинарного выбора 162
ПРИЛОЖЕНИЕ В. Дополнительная информация по моделям множественного выбора 172
ПРИЛОЖЕНИЕ Г. Корреляции риск-факторов при валидации моделей 181
ПРИЛОЖЕНИЕ Д. Список основных терминов и определений 182
Глава 1 СИСТЕМАТИЗАЦИЯ МЕТОДОВ И МОДЕЛЕЙ ОЦЕНКИ КРЕДИТНОГО РИСКА ИНВЕСТИЦИОННЫХ ПРОЕКТОВ 14
1.1 Структурирование рисков проектного финансирования 14
1.2 Классификация методов оценки кредитного риска инвестиционных проектов 23
1.3 Практические особенности использования моделей оценки кредитного риска по инвестиционным проектам в российской и зарубежной практике 37
Глава 2 РАЗВИТИЕ МЕТОДОВ И РЕЙТИНГОВЫХ МОДЕЛЕЙ ДЛЯ ОЦЕНКИ ИНВЕСТИЦИОННЫХ ПРОЕКТОВ 42
2.1 Оценка вероятности дефолта с использованием модели бинарного выбора 42
2.2 Оценка вероятности дефолта с использованием модели множественного выбора 72
2.3 Формирование рейтингов кредитоспособности инвестиционных проектов 89
Глава 3 ВАЛИДАЦИЯ И ПОВЫШЕНИЕ ПРОГНОЗНЫХ СПОСОБНОСТЕЙ МОДЕЛЕЙ 101
3.1 Практическая валидация разработанных рейтинговых моделей ... 101
3.2 Повышение прогнозных способностей моделей за счет макроэкономических риск-факторов 109
3.3 Дополнительные возможности повышения качества и проверки рейтинговых моделей инвестиционных проектов 131
ЗАКЛЮЧЕНИЕ 141
3
СПИСОК ЛИТЕРАТУРЫ 143
ПРИЛОЖЕНИЕ А. Алгоритмы расчета риск-факторов на основании данных российской финансовой отчетности 157
ПРИЛОЖЕНИЕ Б. Дополнительная информация по моделям бинарного выбора 162
ПРИЛОЖЕНИЕ В. Дополнительная информация по моделям множественного выбора 172
ПРИЛОЖЕНИЕ Г. Корреляции риск-факторов при валидации моделей 181
ПРИЛОЖЕНИЕ Д. Список основных терминов и определений 182
Модели оценки вероятности дефолта играют важную роль в системах риск-менеджмента коммерческих банков [Севрук, 2001; Петров, Помазанов, 2008], так как позволяют осуществить оценку кредитоспособности для различных контрагентов и сделок. Внедрение в практику первого компонента Базель II [Симановский, 2007; Бондарчук, 2012] предполагает использование продвинутого подхода оценки кредитоспособности кредитного портфеля с использованием внутренних рейтинговых моделей (IRB Approach) для оценки кредитного риска. Это требует разработки отдельных моделей для различающихся по экономической сущности и уровню принимаемого кредитного риска групп активов [Анализ математических моделей Базель II, 2010]. В частности, многие российские банки испытывают сложности, связанные с разработкой моделей для сделок проектного финансирования. Проектное финансирование представляет собой финансирование инвестиционных проектов, при котором источником обслуживания долговых обязательств являются денежные потоки, генерируемые самими проектами. Специфика этого вида инвестирования состоит в том, что оценка затрат и доходов осуществляется с учётом распределения риска между участниками проекта [Лаврушин, 2013]. Сложности при разработке рейтинговых моделей оценки кредитоспособности инвестиционных проектов связаны с ограниченным объемом данных и отсутствием достаточной дефолтной статистики по инвестиционным проектам. Помимо этого экономическая суть различных групп инвестиционных проектов может различаться, в результате чего для каждой такой группы на кредитоспособность проектов могут влиять различные объясняющие переменные, что требует разработки отдельной модели для каждой группы проектов.
Достоинствами проектного финансирования являются [Стратегия модернизации российской экономики, 2010]:
5
• отсутствие прямых финансовых обязательств организаторов, что не влияет на достаточность капитала и рейтинги их основной деятельности;
• возможность разделить риски, включая политические, и долг, исключить ограничения по другим транзакциям инициатора проекта;
• формирование заинтересованности банков во вхождении в проектный синдикат на стадии его формирования [Kleimeier, 2000];
• участие кредиторов в экспертизе проекта [Coleshaw, 1989] в ходе его реализации для оперативного предотвращения возможных убытков. Проведенные исследования показали, что сделки проектного
финансирования имеют большую длительность и рассчитаны на более рискованных заемщиков, чем обычные сделки. Среди исследований в области проектного финансирования выделяются работы [Kayser, 2013], [Laishram, Kalidini, 2009], [Gatti, 2013], [Hait, 2011]. При оценке кредитоспособности инвестиционных проектов на различных временных интервалах используются модели выживаемости, представленные в работах [Кокс, Льюис, 1969], [Кокс, Оукс, 1988]. Преемственность методологии исследования связана с использованием подходов к оценке вероятности дефолта (применение моделей бинарного и множественного выбора в логит- и пробит-спецификациях, калибровка рейтинговых моделей, использование KS-статистики при принятии решения об участии в проекте и прочие), применяемых в предшествующих работах [Битюцкий, 2013; Энциклопедия финансового риск-менеджмента, 2009; Рогов, 2001; Peresetsky, 2011; Карминский, 2013; Тотьмянина, 2014].
Целью исследования является развитие методов оценки вероятности дефолта инвестиционных проектов. Для достижения цели были поставлены следующие задачи:
• Систематизировать существующие подходы к построению моделей оценки вероятности дефолта по инвестиционным проектам;
6
• Выявить перечень факторов, влияющих на кредитные риски инвестиционных проектов, и сформировать выборку данных по инвестиционным проектам для эмпирического исследования;
• Разработать эконометрические модели для оценки вероятности дефолта инвестиционных проектов;
• Оценить устойчивость и прогнозную силу (дискриминационную способность) разработанных моделей;
• Построить подходящую для российских банков рейтинговую мастер- шкалу, позволяющую на основании годовых вероятностей дефолта активов различных классов заимствований получать внутренние рейтинги;
• Провести оценку применимости предлагаемых моделей для управления рисками инвестиционных проектов на наиболее актуальных данных (осуществить валидацию разработанных рейтинговых моделей). Объектом исследования являются российские инвестиционные
проекты, по которым доступна публичная информация, а предметом исследования - методы оценки вероятности дефолта инвестиционных проектов и их рейтингование.
Методами проведения исследования являются методы финансового анализа, экономико-статистического моделирования и эконометрические методы.
Методологическая база исследования включает в себя рекомендации Базельских соглашений [Basel, 2006] по реализации подхода кредитного риска на основе внутренних рейтингов (IRB Approach).
В качестве информационной базы использовалась база данных Bureau van Dijk (База данных Руслана). В данных источниках присутствовала полная информация по 85 отечественным инвестиционным проектам за 2007-2014 годы по ряду относительных показателей. Экспертные рейтинги (для модели множественного выбора) по инвестиционным проектам были определены с
7
учетом негативной информации, имеющейся за время жизни проектов, полученной из различных источников. Использование абсолютных факторов риска (таких, как NPV - чистая текущая стоимость инвестиционного проекта) при моделировании было принято нецелесообразным в связи с их привязкой к определенным этапам экономического цикла и сильным влиянием на такие риск-факторы показателя инфляции. Эмпирические результаты получены с использованием программного обеспечения MATLAB R2010b [Цисарь, 2008; Иглин, 2006].
Научная новизна исследования состоит в:
• развитии подходов и методов моделирования основных компонент кредитного риска;
• разработке новых рейтинговых подходов для оценки кредитных рисков инвестиционных проектов на основе российской статистики;
• формировании рейтингового процесса оценки инвестиционных проектов в российских банках;
• развитии методов калибровки моделей ранжирования с учетом экономического цикла.
К основным полученным результатам исследования, характеризующим научную новизну, относятся следующие группы проблем:
1. Систематизация и развитие подходов и методов моделирования основных компонент кредитного риска (PD, LGD, EAD) по инвестиционным проектам, формирование собственной классификации методов построения моделей оценки вероятности дефолта инвестиционных проектов (PD) с использованием портфельных (метод бинарного выбора, метод линейной регрессии, метод множественного выбора, метод пропорциональных интенсивностей Кокса) и индивидуальных подходов (симуляционные модели) и необходимых условий для их применения в кредитных организациях, а также формирование собственной классификации методов оценки и
8
прогнозирование других компонент кредитного риска (LGD и EAD), что соответствует паспорту научной специальности 08.00.10 - Финансы, денежное обращение и кредит в части раздела 10. «Банки и иные кредитные организации» пункта 10.16. «Система мониторинга и прогнозирования банковских рисков».
2. Разработка совокупности подходов к оценке вероятности дефолта отечественных инвестиционных проектов с использованием методов бинарного и множественного выбора, ранее ограниченно использовавшихся при разработке таких моделей только в зарубежной практике, на основании сформированной эмпирической выборки по отечественным инвестиционным проектам, что соответствует паспорту научной специальности 08.00.10 - Финансы, денежное обращение и кредит в части раздела 10. «Банки и иные кредитные организации» пункта 10.12. «Совершенствование системы управления рисками российских банков» и пункта 10.16. «Система мониторинга и прогнозирования банковских рисков».
3. Формирование рейтингового процесса для инвестиционных проектов, учитывающего применение разработанной рейтинговой мастер-шкалы, которая может быть применена российскими банками в процессе рейтингования и учитывает основные недостатки, связанные с использованием рейтинговых шкал зарубежных и отечественных рейтинговых агентств, что соответствует паспорту научной специальности 08.00.10 - Финансы, денежное обращение и кредит в части раздела 10. «Банки и иные кредитные организации» пункта 10.12. «Совершенствование системы управления рисками российских банков».
4. Развитие методов калибровки моделей оценки вероятности дефолта по инвестиционным проектам (разработка алгоритма повышения прогнозных способностей) за счет учета макроэкономических
9
показателей, характеризующих экономический цикл, выраженных через сводный макроэкономический индикатор, что соответствует паспорту научной специальности 08.00.10 - Финансы, денежное обращение и кредит в части раздела 10. «Банки и иные кредитные организации» пункта 10.12. «Совершенствование системы управления рисками российских банков».
Достоинствами проектного финансирования являются [Стратегия модернизации российской экономики, 2010]:
5
• отсутствие прямых финансовых обязательств организаторов, что не влияет на достаточность капитала и рейтинги их основной деятельности;
• возможность разделить риски, включая политические, и долг, исключить ограничения по другим транзакциям инициатора проекта;
• формирование заинтересованности банков во вхождении в проектный синдикат на стадии его формирования [Kleimeier, 2000];
• участие кредиторов в экспертизе проекта [Coleshaw, 1989] в ходе его реализации для оперативного предотвращения возможных убытков. Проведенные исследования показали, что сделки проектного
финансирования имеют большую длительность и рассчитаны на более рискованных заемщиков, чем обычные сделки. Среди исследований в области проектного финансирования выделяются работы [Kayser, 2013], [Laishram, Kalidini, 2009], [Gatti, 2013], [Hait, 2011]. При оценке кредитоспособности инвестиционных проектов на различных временных интервалах используются модели выживаемости, представленные в работах [Кокс, Льюис, 1969], [Кокс, Оукс, 1988]. Преемственность методологии исследования связана с использованием подходов к оценке вероятности дефолта (применение моделей бинарного и множественного выбора в логит- и пробит-спецификациях, калибровка рейтинговых моделей, использование KS-статистики при принятии решения об участии в проекте и прочие), применяемых в предшествующих работах [Битюцкий, 2013; Энциклопедия финансового риск-менеджмента, 2009; Рогов, 2001; Peresetsky, 2011; Карминский, 2013; Тотьмянина, 2014].
Целью исследования является развитие методов оценки вероятности дефолта инвестиционных проектов. Для достижения цели были поставлены следующие задачи:
• Систематизировать существующие подходы к построению моделей оценки вероятности дефолта по инвестиционным проектам;
6
• Выявить перечень факторов, влияющих на кредитные риски инвестиционных проектов, и сформировать выборку данных по инвестиционным проектам для эмпирического исследования;
• Разработать эконометрические модели для оценки вероятности дефолта инвестиционных проектов;
• Оценить устойчивость и прогнозную силу (дискриминационную способность) разработанных моделей;
• Построить подходящую для российских банков рейтинговую мастер- шкалу, позволяющую на основании годовых вероятностей дефолта активов различных классов заимствований получать внутренние рейтинги;
• Провести оценку применимости предлагаемых моделей для управления рисками инвестиционных проектов на наиболее актуальных данных (осуществить валидацию разработанных рейтинговых моделей). Объектом исследования являются российские инвестиционные
проекты, по которым доступна публичная информация, а предметом исследования - методы оценки вероятности дефолта инвестиционных проектов и их рейтингование.
Методами проведения исследования являются методы финансового анализа, экономико-статистического моделирования и эконометрические методы.
Методологическая база исследования включает в себя рекомендации Базельских соглашений [Basel, 2006] по реализации подхода кредитного риска на основе внутренних рейтингов (IRB Approach).
В качестве информационной базы использовалась база данных Bureau van Dijk (База данных Руслана). В данных источниках присутствовала полная информация по 85 отечественным инвестиционным проектам за 2007-2014 годы по ряду относительных показателей. Экспертные рейтинги (для модели множественного выбора) по инвестиционным проектам были определены с
7
учетом негативной информации, имеющейся за время жизни проектов, полученной из различных источников. Использование абсолютных факторов риска (таких, как NPV - чистая текущая стоимость инвестиционного проекта) при моделировании было принято нецелесообразным в связи с их привязкой к определенным этапам экономического цикла и сильным влиянием на такие риск-факторы показателя инфляции. Эмпирические результаты получены с использованием программного обеспечения MATLAB R2010b [Цисарь, 2008; Иглин, 2006].
Научная новизна исследования состоит в:
• развитии подходов и методов моделирования основных компонент кредитного риска;
• разработке новых рейтинговых подходов для оценки кредитных рисков инвестиционных проектов на основе российской статистики;
• формировании рейтингового процесса оценки инвестиционных проектов в российских банках;
• развитии методов калибровки моделей ранжирования с учетом экономического цикла.
К основным полученным результатам исследования, характеризующим научную новизну, относятся следующие группы проблем:
1. Систематизация и развитие подходов и методов моделирования основных компонент кредитного риска (PD, LGD, EAD) по инвестиционным проектам, формирование собственной классификации методов построения моделей оценки вероятности дефолта инвестиционных проектов (PD) с использованием портфельных (метод бинарного выбора, метод линейной регрессии, метод множественного выбора, метод пропорциональных интенсивностей Кокса) и индивидуальных подходов (симуляционные модели) и необходимых условий для их применения в кредитных организациях, а также формирование собственной классификации методов оценки и
8
прогнозирование других компонент кредитного риска (LGD и EAD), что соответствует паспорту научной специальности 08.00.10 - Финансы, денежное обращение и кредит в части раздела 10. «Банки и иные кредитные организации» пункта 10.16. «Система мониторинга и прогнозирования банковских рисков».
2. Разработка совокупности подходов к оценке вероятности дефолта отечественных инвестиционных проектов с использованием методов бинарного и множественного выбора, ранее ограниченно использовавшихся при разработке таких моделей только в зарубежной практике, на основании сформированной эмпирической выборки по отечественным инвестиционным проектам, что соответствует паспорту научной специальности 08.00.10 - Финансы, денежное обращение и кредит в части раздела 10. «Банки и иные кредитные организации» пункта 10.12. «Совершенствование системы управления рисками российских банков» и пункта 10.16. «Система мониторинга и прогнозирования банковских рисков».
3. Формирование рейтингового процесса для инвестиционных проектов, учитывающего применение разработанной рейтинговой мастер-шкалы, которая может быть применена российскими банками в процессе рейтингования и учитывает основные недостатки, связанные с использованием рейтинговых шкал зарубежных и отечественных рейтинговых агентств, что соответствует паспорту научной специальности 08.00.10 - Финансы, денежное обращение и кредит в части раздела 10. «Банки и иные кредитные организации» пункта 10.12. «Совершенствование системы управления рисками российских банков».
4. Развитие методов калибровки моделей оценки вероятности дефолта по инвестиционным проектам (разработка алгоритма повышения прогнозных способностей) за счет учета макроэкономических
9
показателей, характеризующих экономический цикл, выраженных через сводный макроэкономический индикатор, что соответствует паспорту научной специальности 08.00.10 - Финансы, денежное обращение и кредит в части раздела 10. «Банки и иные кредитные организации» пункта 10.12. «Совершенствование системы управления рисками российских банков».
Подводя итог диссертационного исследования, необходимо отметить, что его основные результаты достигнуты и позволяют кредитным организациям совершенствовать свою систему риск-менеджмента по инвестиционным проектам, как применяя разработанные методологии рейтинговой оценки (при положительных результатах валидации на собственных кредитных портфелях инвестиционных проектов), так и используя подходы (аналогичные предложенным в диссертации) для разработки собственных методологий рейтинговой оценки инвестиционных проектов. Следует выделить основные результаты и выводы из диссертационного исследования:
1. Сформирована собственная полноценная классификация методов оценки вероятности дефолта инвестиционных проектов (PD) и прочих компонент кредитного риска (LGD, EAD).
2. Сформирована эмпирическая выборка, включающая в себя риск- факторы, влияющие на кредитные риски инвестиционных проектов, на основании которой выдвинута гипотеза о сильном влиянии риск-фактора IRR на кредитоспособность инвестиционного проекта, однако проверить должным образом данную гипотезу на текущий момент не представляется возможным в связи с ограниченностью имеющихся статистических данных.
3. Полученные модели бинарного и множественного выбора обладают высокой дискриминационной способностью, которая сохраняется и по результатам проведенной на актуальных данных валидации, что подтверждает возможность применения методов бинарного и множественного выбора при оценке кредитоспособности инвестиционных проектов и дает возможность сделать вывод о стабильности разработанных
142
моделей на имеющихся данных, однако в связи с ограниченностью данных необходима регулярная валидация (а при необходимости - актуализация) моделей.
4. Полученная рейтинговая мастер-шкала может быть использована при рейтинговании российских инвестиционных проектов, что подтверждается высокой концентрацией инвестиционных проектов для большинства рейтинговых разрядов, а предложенный в диссертации рейтинговый процесс позволяет учитывать как портфельные риски инвестиционных проектов, так и индивидуальные риски, которые оцениваются с использованием Дополнительных факторов риска, приведенных в исследовании, а также - Экспертных корректировок, которые не являются формализованными и включают в себя специфические индивидуальные особенности инвестиционных проектов.
5. Прогнозные способности моделей были повышены за счет учета макроэкономических показателей, характеризующих экономический цикл, в виде сводного макроэкономического индикатора, а сами модели - актуализированы на последних имевшихся данных.
6. Использование кредитными организациями предложенных в диссертационном исследовании методов при разработке собственных методологий рейтинговой оценки сделок проектного финансирования на основе внутренних рейтингов (IRB Approach) должно учитывать специфику собственных кредитных портфелей инвестиционных проектов.
1. Сформирована собственная полноценная классификация методов оценки вероятности дефолта инвестиционных проектов (PD) и прочих компонент кредитного риска (LGD, EAD).
2. Сформирована эмпирическая выборка, включающая в себя риск- факторы, влияющие на кредитные риски инвестиционных проектов, на основании которой выдвинута гипотеза о сильном влиянии риск-фактора IRR на кредитоспособность инвестиционного проекта, однако проверить должным образом данную гипотезу на текущий момент не представляется возможным в связи с ограниченностью имеющихся статистических данных.
3. Полученные модели бинарного и множественного выбора обладают высокой дискриминационной способностью, которая сохраняется и по результатам проведенной на актуальных данных валидации, что подтверждает возможность применения методов бинарного и множественного выбора при оценке кредитоспособности инвестиционных проектов и дает возможность сделать вывод о стабильности разработанных
142
моделей на имеющихся данных, однако в связи с ограниченностью данных необходима регулярная валидация (а при необходимости - актуализация) моделей.
4. Полученная рейтинговая мастер-шкала может быть использована при рейтинговании российских инвестиционных проектов, что подтверждается высокой концентрацией инвестиционных проектов для большинства рейтинговых разрядов, а предложенный в диссертации рейтинговый процесс позволяет учитывать как портфельные риски инвестиционных проектов, так и индивидуальные риски, которые оцениваются с использованием Дополнительных факторов риска, приведенных в исследовании, а также - Экспертных корректировок, которые не являются формализованными и включают в себя специфические индивидуальные особенности инвестиционных проектов.
5. Прогнозные способности моделей были повышены за счет учета макроэкономических показателей, характеризующих экономический цикл, в виде сводного макроэкономического индикатора, а сами модели - актуализированы на последних имевшихся данных.
6. Использование кредитными организациями предложенных в диссертационном исследовании методов при разработке собственных методологий рейтинговой оценки сделок проектного финансирования на основе внутренних рейтингов (IRB Approach) должно учитывать специфику собственных кредитных портфелей инвестиционных проектов.
Подобные работы
- СОВЕРШЕНСТВОВАНИЕ МЕТОДИКИ УЧЕТА РИСКА ПРИ ОЦЕНКЕ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ИНВЕСТИЦИОННЫХ ПРОЕКТОВ В АЛЮМИНИЕВОЙ ОТРАСЛИ (на примере АО «РУСАЛ-Красноярск»)
Магистерская диссертация, экономика. Язык работы: Русский. Цена: 4900 р. Год сдачи: 2018 - Управление кредитными рисками в организации
Дипломные работы, ВКР, экономика. Язык работы: Русский. Цена: 4345 р. Год сдачи: 2018 - Кредитный риск и оценка надежности эмитентов корпоративных облигаций
Курсовые работы, менеджмент. Язык работы: Русский. Цена: 1300 р. Год сдачи: 2010 - Оценка экономической эффективности инвестиционного проекта строительства жилого комплекса в г. Москве
Дипломные работы, ВКР, экономика. Язык работы: Русский. Цена: 4210 р. Год сдачи: 2020 - СОВЕРШЕНСТВОВАНИЕ МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОЦЕНКИ ЭФФЕКТИВНОСТИ ИНВЕСТИЦИОННОГО ПРОЕКТА ПРЕДПРИЯТИЯ ТЕЛЕКОММУНИКАЦИОННОЙ ОТРАСЛИ
Главы к дипломным работам, менеджмент. Язык работы: Русский. Цена: 7300 р. Год сдачи: 2016 - Совершенствование управления кредитным риском по операциям банка с физическими лицами (на примере Сбербанка РФ)
Магистерская диссертация, финансы и кредит. Язык работы: Русский. Цена: 4900 р. Год сдачи: 2016 - Разработка и оценка экономической эффективности инвестиционного проекта
Дипломные работы, ВКР, менеджмент. Язык работы: Русский. Цена: 4260 р. Год сдачи: 2017 - ВЗАИМОСВЯЗЬ НАЛИЧИЯ ОБЛИГАЦИОННЫХ ЗАЙМОВ И КРЕДИТНОГО РИСКА КОМПАНИИ
Бакалаврская работа, менеджмент. Язык работы: Русский. Цена: 4260 р. Год сдачи: 2018 - ОЦЕНКА ВНУТРЕННЕГО РИСКА КОММЕРЧЕСКОГО БАНКА
Магистерская диссертация, экономика. Язык работы: Русский. Цена: 4600 р. Год сдачи: 2021



