Разработка биотехнологии вакцины чумной живой сухой со сниженным количеством человеко-доз в производственной упаковке (ампуле)
|
ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ 5
ВВЕДЕНИЕ 6
Глава 1. ОБЗОР ЛИТЕРАТУРЫ 13
1.1 Современное состояние и перспективы совершенствования 13 эффективности чумных вакцин
1.2 Оптимизация этапов биотехнологии производства вакцины чумной живой сухой 21
1.2.1 Некоторые вопросы управляемого культивирования биомассы вакцинного штамма ЕВ 21
1.2.2 Пути совершенствования биологических показателей вак¬цины чумной живой на этапах сведения, разлива и лиофилизации бактериальной суспензии 26
СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ
Глава 2. МАТЕРИАЛЫ И МЕТОДЫ 33
2.1 Материалы 33
2.2 Методы исследования 37
Глава 3. СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ПРЕПАРАТА ВАКЦИНЫ ЧУМНОЙ ЖИВОЙ СУХОЙ В ЗАВИСИМОСТИ ОТ ОБЩЕЙ КОНЦЕНТРАЦИИ МИКРОБОВ И ОБЪЕМА ВАКЦИННОЙ СУСПЕНЗИИ В АМПУЛЕ 44
Глава 4. БИОТЕХНОЛОГИЯ ВАКЦИНЫ ЧУМНОЙ ЖИВОЙ СУХОЙ СО СНИЖЕННЫМ КОЛИЧЕСТВОМ ЧЕЛОВЕКО-ДОЗ В АМПУЛЕ 54
2
4.1 Приготовление посевной культуры, засев маточной культуры в АКМ-Ш, условия культивирования вакцинного штамма чумного микроба 54
4.2 Смыв бактериальной массы с поверхности агара с последующим приготовлением необходимой концентрации микробных клеток, разлив, лиофилизация вакцины 58
4.3 Некоторые вопросы стабилизации вакцинной суспензии в производстве вакцины ЕВ в зависимости от условий лиофилизации 61
4.4 Оптимизация параметров вакцинной суспензии в биотехнологии производства вакцины чумной живой сухой глубинным методом культивирования 66
Глава 5. СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПАРА¬МЕТРОВ И ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ВАКЦИНЫ ЧУМНОЙ ЖИВОЙ СУХОЙ СО СНИЖЕННЫМ КОЛИЧЕСТВОМ ЧЕЛОВЕКО-ДОЗ В АМПУЛЕ И КОММЕРЧЕСКОГО ПРЕПАРАТА 72
5.1 Сравнительная характеристика образцов вакцины чумной живой сухой в зависимости от параметров вакцинной суспензии по критериям жизнеспособности, термостабильности, иммуногенности 72
5.2 Изучение реактогенности различных образцов вакцины чумной живой сухой 77
5.3 Оценка экономической эффективности вакцины чумной жи¬вой сухой со сниженным количеством человеко-доз в ампуле 80
ЗАКЛЮЧЕНИЕ 82
ВЫВОДЫ 91
3
СПИСОК ИСПОЛЬЗОВАННОЙ
ЛИТЕРАТУРЫ 93
ВВЕДЕНИЕ 6
Глава 1. ОБЗОР ЛИТЕРАТУРЫ 13
1.1 Современное состояние и перспективы совершенствования 13 эффективности чумных вакцин
1.2 Оптимизация этапов биотехнологии производства вакцины чумной живой сухой 21
1.2.1 Некоторые вопросы управляемого культивирования биомассы вакцинного штамма ЕВ 21
1.2.2 Пути совершенствования биологических показателей вак¬цины чумной живой на этапах сведения, разлива и лиофилизации бактериальной суспензии 26
СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ
Глава 2. МАТЕРИАЛЫ И МЕТОДЫ 33
2.1 Материалы 33
2.2 Методы исследования 37
Глава 3. СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ПРЕПАРАТА ВАКЦИНЫ ЧУМНОЙ ЖИВОЙ СУХОЙ В ЗАВИСИМОСТИ ОТ ОБЩЕЙ КОНЦЕНТРАЦИИ МИКРОБОВ И ОБЪЕМА ВАКЦИННОЙ СУСПЕНЗИИ В АМПУЛЕ 44
Глава 4. БИОТЕХНОЛОГИЯ ВАКЦИНЫ ЧУМНОЙ ЖИВОЙ СУХОЙ СО СНИЖЕННЫМ КОЛИЧЕСТВОМ ЧЕЛОВЕКО-ДОЗ В АМПУЛЕ 54
2
4.1 Приготовление посевной культуры, засев маточной культуры в АКМ-Ш, условия культивирования вакцинного штамма чумного микроба 54
4.2 Смыв бактериальной массы с поверхности агара с последующим приготовлением необходимой концентрации микробных клеток, разлив, лиофилизация вакцины 58
4.3 Некоторые вопросы стабилизации вакцинной суспензии в производстве вакцины ЕВ в зависимости от условий лиофилизации 61
4.4 Оптимизация параметров вакцинной суспензии в биотехнологии производства вакцины чумной живой сухой глубинным методом культивирования 66
Глава 5. СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПАРА¬МЕТРОВ И ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ВАКЦИНЫ ЧУМНОЙ ЖИВОЙ СУХОЙ СО СНИЖЕННЫМ КОЛИЧЕСТВОМ ЧЕЛОВЕКО-ДОЗ В АМПУЛЕ И КОММЕРЧЕСКОГО ПРЕПАРАТА 72
5.1 Сравнительная характеристика образцов вакцины чумной живой сухой в зависимости от параметров вакцинной суспензии по критериям жизнеспособности, термостабильности, иммуногенности 72
5.2 Изучение реактогенности различных образцов вакцины чумной живой сухой 77
5.3 Оценка экономической эффективности вакцины чумной жи¬вой сухой со сниженным количеством человеко-доз в ампуле 80
ЗАКЛЮЧЕНИЕ 82
ВЫВОДЫ 91
3
СПИСОК ИСПОЛЬЗОВАННОЙ
ЛИТЕРАТУРЫ 93
Многолетний опыт использования вакцинации как средства специфической профилактики особо опасных инфекций свидетельствует о сохранении ее весомой роли (Исупов И.В., Бугоркова С.А., Кутырев В.В., 2004). В практике проведения противоэпидемической работы в нашей стране широко применяют живые вакцины. Один из таких препаратов представляет собой вакцину из штамма ЕВ чумного микроба. Совершенствование специфической профилактики чумы является одной из актуальных задач обеспечения эпидемического благополучия. (А.И. Коротяев, С.А. Бабичев, 2002). Эпидемический потенциал чумной инфекции, оставаясь в настоящее время довольно напряженным, обусловлен существованием в нашей стране и на сопредельных территориях очагов чумы с постоянно протекающими в них эпизоотиями (Сулейманов Б.М., 1995; Онищенко Г.Г., Кутырев В.В., 2004). Исследования отечественных ученых показали, что наиболее эффективным препаратом противоэпидемического значения является вакцина чумная живая из штамма EV (Борисов Л.Б., 2002).
Наиболее важным вопросом, возникающим при приготовлении живых вакцин, является необходимость сохранения всех свойств микробов в течение длительного времени, то есть стабилизация качества препарата. Тактика совершенствования чумной вакцины осуществляется в направлении разработки и внедрения в производство дополнительных условий стабилизации числа живых микробных клеток в прививочной дозе коммерческой вакцины.
Одним из существенных и принципиально нерешенных вопросов остается значительное снижение количества живых микробных клеток в вакцинирующей дозе, особенно к концу срока годности препарата, что само по себе является свойством закономерным, поскольку, согласно большому литературному материалу и многолетнему опыту изучения свойств чумных
6
вакцин, метод лиофильного высушивания не способен обеспечить полной и длительной стабилизации свойств биообъектов, в том числе и чумной вакцины.
Из факторов, влияющих на выживаемость микроорганизмов в процессе высушивания и дальнейшего хранения, наиболее важную роль играет состав защитной среды и окружающая температура. В настоящее время среды высушивания достаточно хорошо изучены, определен необходимый состав ингредиентов, включающий кристаллоидные, коллоидные вещества и антиокислители, но выбор их осуществляется в основном эмпирически, без достаточного учета современных знаний механизма защиты бактериальных клеток на различных этапах лиофилизации и хранения. Несмотря на то, что основные этапы производства коммерческого препарата строго регламентированы, некоторые количественные параметры вакцины колеблются в значительных пределах. Например, общее число микробных клеток в 1 мл вакцинной суспензии согласно регламентирующей документации составляет от 50 до 100 млрд.
Важным моментом биотехнологии производства чумной вакцины является оптимизация процентного содержания компонентов на единицу взвешенных в среде микробных клеток и отработка режимов лиофилизации, которые позволили бы достигать низкой потери массы при высушивании.
В контексте сказанного следует обратить внимание на разработку биотехнологии изготовления чумной вакцины со сниженным числом человеко-доз в ампуле. Указанная форма является удобной для проведения иммунизации сравнительно небольших по численности коллективов, когда ресуспендированный препарат не может длительно храниться и должен быть сразу же использован. Изменение параметров указанной вакцины касается не только густоты вакцинной суспензии, что отражается на количественном соотношении микробных клеток и стабилизатора, но и уменьшенного объема вакцины в ампуле.
Наиболее важным вопросом, возникающим при приготовлении живых вакцин, является необходимость сохранения всех свойств микробов в течение длительного времени, то есть стабилизация качества препарата. Тактика совершенствования чумной вакцины осуществляется в направлении разработки и внедрения в производство дополнительных условий стабилизации числа живых микробных клеток в прививочной дозе коммерческой вакцины.
Одним из существенных и принципиально нерешенных вопросов остается значительное снижение количества живых микробных клеток в вакцинирующей дозе, особенно к концу срока годности препарата, что само по себе является свойством закономерным, поскольку, согласно большому литературному материалу и многолетнему опыту изучения свойств чумных
6
вакцин, метод лиофильного высушивания не способен обеспечить полной и длительной стабилизации свойств биообъектов, в том числе и чумной вакцины.
Из факторов, влияющих на выживаемость микроорганизмов в процессе высушивания и дальнейшего хранения, наиболее важную роль играет состав защитной среды и окружающая температура. В настоящее время среды высушивания достаточно хорошо изучены, определен необходимый состав ингредиентов, включающий кристаллоидные, коллоидные вещества и антиокислители, но выбор их осуществляется в основном эмпирически, без достаточного учета современных знаний механизма защиты бактериальных клеток на различных этапах лиофилизации и хранения. Несмотря на то, что основные этапы производства коммерческого препарата строго регламентированы, некоторые количественные параметры вакцины колеблются в значительных пределах. Например, общее число микробных клеток в 1 мл вакцинной суспензии согласно регламентирующей документации составляет от 50 до 100 млрд.
Важным моментом биотехнологии производства чумной вакцины является оптимизация процентного содержания компонентов на единицу взвешенных в среде микробных клеток и отработка режимов лиофилизации, которые позволили бы достигать низкой потери массы при высушивании.
В контексте сказанного следует обратить внимание на разработку биотехнологии изготовления чумной вакцины со сниженным числом человеко-доз в ампуле. Указанная форма является удобной для проведения иммунизации сравнительно небольших по численности коллективов, когда ресуспендированный препарат не может длительно храниться и должен быть сразу же использован. Изменение параметров указанной вакцины касается не только густоты вакцинной суспензии, что отражается на количественном соотношении микробных клеток и стабилизатора, но и уменьшенного объема вакцины в ампуле.
Производство чумной вакцины представляет собой биотехнологический цикл, учитывающий и сохраняющий биологические свойства микробов вакцинного штамма ЕВ, являющихся исходным материалом для накопления биомассы. За многие годы производственного выпуска чумной вакцины хорошо отработана технология ее изготовления.
Совершенствование биотехнологии чумной вакцины развивается преимущественно в направлениях, способствующих наработкам большого количества бакмассы, внедрению эффективных методов аппаратного культивирования, оптимизации и конструированию новых питательных сред, в частности из непищевого сырья, дальнейшей стандартизации коммерческого препарата вакцины ЕВ.
Литературные данные свидетельствуют, что в настоящее время совершенствование технологии производства чумной вакцины развивается в направлении стандартизации живой чумной вакцины по единому числу человеко-доз (Ракитина Е.Л., 1988; Будыка Д.А., 2002), и повышению термостабильности и стабилизации препарата в процессе длительного хранения (Будыка Д.А. с соавт., 2000; Будыка Д.А., 2002).
Но несмотря на то, что почти все этапы производственного цикла четко регламентированы, отмечается очень широкая вариабельность свойств вакцинного препарата, например, жизнеспособности коммерческих серий чумной вакцины - от 25 до 50 % (Ракитина Е.Л., 1988) при оптической концентрации микробных клеток от 50 до 100 млрд/мл. Учитывая, что наиболее важным показателем, характеризующим качество препарата чумной вакцины, является число живых микробов в человеко-дозе, данному критерию уделяют особое внимание. Этот показатель используется, как один из основных, при отработке и совершенствовании различных этапов изготовления препарата.
82
Биотехнология вакцины чумной живой сухой должна быть призвана наиболее полно сохранить иммуногенные свойства в процессе производства коммерческого препарата, которые, прежде всего, обусловлены живыми клетками вакцинного штамма. Предпринятые исследования были посвящены созданию более оптимальных условий воздействия защитных компонентов стабилизатора на единицу взвешенных в нем микробных клеток за счет уменьшения общего количества микробных клеток в смываемой суспензии и, как следствие, в чумной вакцине (в 10 раз уменьшенной концентрацией по сравнению с регламентированной (50-100 млрд/мл) (Васильева А. А., 2004). Это достигается путем дополнительного внесения расчетного количества стабилизатора в вакцинную суспензию на этапе ее сведения, и возможностью достичь в регламентированных пределах состояния более глубокого анабиоза живых микробных клеток при лиофилизации за счет уменьшения объема вакцинной суспензии с 2 мл до 1 мл в ампуле на этапе разлива, предшествующему процессу замораживания- высушивания.
Из данных литературы известно, что уменьшение объема вакцинной суспензии в ампуле до 1 мл и снижение концентрации микробных клеток не ухудшало качественных показателей препарата, а некоторые из них (термостабильность, повреждаемость) были достоверно лучше по сравнению с контролем (коммерческая вакцина) (Бондаренко А.И., 1995; Будыка Д. А. с соавт., 2000). Бондаренко А.И. и Тинкер А.И. (1991) при помощи электронной микроскопии показали, что существует зависимость между числом поврежденных клеток в вакцине по мере увеличения общей концентрации микробов в суспензии и от ее объема (1 и 2 мл) в ампуле.
Предварительно отработали в эксперименте различные образцы вакцины со сниженным количеством микробных клеток в суспензии. Бактериальную массу для экспериментальных серий получали в процессе производства живой чумной вакцины. Экспериментальные серии (8 серий) готовили путем дополнительного разведения стабилизатором до
83
концентрации 1,9-109 м.к./мл микробных клеток. Приготовленную вакцину разливали в ампулы по 1 мл. В качестве контрольных служили производственные серии с оптической концентрацией около 80 млрд/мл, разлитые по 2 мл. Всю вакцину лиофилизировали в аппарате LZ-45. Пайку ампул проводили под вакуумом.
Провели изучение жизнеспособности, повреждаемости микробных клеток в экспериментальных сериях чумной вакцины с объемом суспензии в ампуле 1 мл и концентрацией 1,9-109 м.к./мл в сравнении с традиционными коммерческими сериями вакцины чумной живой сухой, содержащими в ампуле 2 мл клеточной суспензии с концентрацией 7-1010 м.к./мл.
Показатель повреждаемости клеток, определяемый при электронной микроскопии, в исследуемых препаратах составил (3,4+0,5)% и был статистически достоверно ниже относительно контрольных образцов (9,7+1,2)% и ОСО (8,8+0,8)%.
Сравнительная характеристика жизнеспособности опытных (33,4+1,3)% и контрольных (26,8+0,6)% образцов чумной вакцины показала, что во все исследуемые сроки этот показатель был достоверно выше у вакцины со сниженной концентрацией микробных клеток. При этом жизнеспособность коммерческой вакцины отвечала требованиям документации лишь в течение одного года, в то время как опытные серии даже через три года хранения в большинстве своем превышали регламентированный показатель 25%, причем критерий достоверности различий жизнеспособности между опытными и контрольными сериями в этот срок исследования достиг наибольшей величины.
В дальнейшем, используя электронную микроскопию для оценки состояния микробных клеток, были изучены качественные характеристики экспериментальных серий чумной вакцины с различными показателями общей концентрации (от 50 до 100 млрд/мл) и объема суспензии в ампуле (1 и 2 мл). Одним из критериев оценки качества была повреждаемость микробов после лиофилизации.
84
Электронной микроскопией было показано, что существует зависимость между числом поврежденных клеток в вакцине по мере увеличения общей концентрации микробов в суспензии: 50, 75, 100 млрд/мл с одной стороны и довольно четкий параллелизм по этому показателю у суспензий с концентрацией 50 и 75 млрд/мл в зависимости от ее объема (1 и
2 мл) в ампуле.
На основании полученных данных сделано заключение о соответствии производственным стандартам (ОСО) по жизнеспособности микробных клеток и превосходству по показателю их повреждаемости в экспериментальных сериях вакцины чумной живой сухой.
Полученные результаты показали, что при одинаковых исходных условиях (культивирование, лиофилизация, хранение) вакцина с измененными тактико-техническими параметрами (концентрация микробных клеток в препарате 1-4х1010 м.к./мл) по основным показателям превосходит коммерческие образцы. Это послужило основанием для разработки биотехнологии и получения экспериментально-производственных серий вакцины чумной живой сухой со сниженным количеством человеко-доз в ампуле в условиях производственного цикла.
Были приготовлены 5 экспериментально-производственных серий препарата вакцины чумной живой сухой (для контроля в лаборатории препаратов против чумы и других особо опасных инфекций ГИСК им. Л.А. Тарасевича) с меньшим, по сравнению с регламентированным, количеством доз в ампуле, приготовленных в условиях производства вакцины в АКМ-Ш поверхностным методом выращивания с использованием всех регламентированных технологических этапов (действующая НД), и отличающихся тем, что на этапе сведения вакцинной суспензии концентрация микробных клеток доводится у части суспензии до параметров 1х1010- 4х1010 в 1 мл путем дополнительного внесения расчетного количества стабилизатора. Во время разлива вакцинной суспензии объем ее ограничивается 1 мл в ампуле.
85
Были изучены параметры жизнеспособности (39,7+1,8)%, термостабильности (8,9+0,7) сут и потери в массе при высушивании (1,02+0,23%) полученных экспериментально-производственных серий вакцины. Результаты показали соответствие по изучаемым параметрам экспериментально-производственных серий вакцины чумной живой сухой действующей НД.
Контроль иммуногенности в соответствии с действующей ФС на вакцину № 42-3877-99. Полученные данные (7254 м.к. для белых мышей и 1360 м.к. для морских свинок) означают, что ED50 экспериментальной вакцины была существенно ниже регламентированных показателей ФС (1-104 ж.м.к. для морских свинок и 4-104 ж.м.к. для белых мышей), т.е. иммуногенность ее весьма высока и превышает, как минимум, пятикратно крайние пределы, регламентированные нормативной документацией.
Помимо общепринятой методики, провели сравнительное изучение на белых мышах эффективности экспериментально-производственной и коммерческой вакцин в феномене «переживания», выраженной в LD50 вирулентного штамма и характеризующей иммуногенность вакцинного препарата, использованного для введения в смеси с вирулентным.
Совершенствование биотехнологии чумной вакцины развивается преимущественно в направлениях, способствующих наработкам большого количества бакмассы, внедрению эффективных методов аппаратного культивирования, оптимизации и конструированию новых питательных сред, в частности из непищевого сырья, дальнейшей стандартизации коммерческого препарата вакцины ЕВ.
Литературные данные свидетельствуют, что в настоящее время совершенствование технологии производства чумной вакцины развивается в направлении стандартизации живой чумной вакцины по единому числу человеко-доз (Ракитина Е.Л., 1988; Будыка Д.А., 2002), и повышению термостабильности и стабилизации препарата в процессе длительного хранения (Будыка Д.А. с соавт., 2000; Будыка Д.А., 2002).
Но несмотря на то, что почти все этапы производственного цикла четко регламентированы, отмечается очень широкая вариабельность свойств вакцинного препарата, например, жизнеспособности коммерческих серий чумной вакцины - от 25 до 50 % (Ракитина Е.Л., 1988) при оптической концентрации микробных клеток от 50 до 100 млрд/мл. Учитывая, что наиболее важным показателем, характеризующим качество препарата чумной вакцины, является число живых микробов в человеко-дозе, данному критерию уделяют особое внимание. Этот показатель используется, как один из основных, при отработке и совершенствовании различных этапов изготовления препарата.
82
Биотехнология вакцины чумной живой сухой должна быть призвана наиболее полно сохранить иммуногенные свойства в процессе производства коммерческого препарата, которые, прежде всего, обусловлены живыми клетками вакцинного штамма. Предпринятые исследования были посвящены созданию более оптимальных условий воздействия защитных компонентов стабилизатора на единицу взвешенных в нем микробных клеток за счет уменьшения общего количества микробных клеток в смываемой суспензии и, как следствие, в чумной вакцине (в 10 раз уменьшенной концентрацией по сравнению с регламентированной (50-100 млрд/мл) (Васильева А. А., 2004). Это достигается путем дополнительного внесения расчетного количества стабилизатора в вакцинную суспензию на этапе ее сведения, и возможностью достичь в регламентированных пределах состояния более глубокого анабиоза живых микробных клеток при лиофилизации за счет уменьшения объема вакцинной суспензии с 2 мл до 1 мл в ампуле на этапе разлива, предшествующему процессу замораживания- высушивания.
Из данных литературы известно, что уменьшение объема вакцинной суспензии в ампуле до 1 мл и снижение концентрации микробных клеток не ухудшало качественных показателей препарата, а некоторые из них (термостабильность, повреждаемость) были достоверно лучше по сравнению с контролем (коммерческая вакцина) (Бондаренко А.И., 1995; Будыка Д. А. с соавт., 2000). Бондаренко А.И. и Тинкер А.И. (1991) при помощи электронной микроскопии показали, что существует зависимость между числом поврежденных клеток в вакцине по мере увеличения общей концентрации микробов в суспензии и от ее объема (1 и 2 мл) в ампуле.
Предварительно отработали в эксперименте различные образцы вакцины со сниженным количеством микробных клеток в суспензии. Бактериальную массу для экспериментальных серий получали в процессе производства живой чумной вакцины. Экспериментальные серии (8 серий) готовили путем дополнительного разведения стабилизатором до
83
концентрации 1,9-109 м.к./мл микробных клеток. Приготовленную вакцину разливали в ампулы по 1 мл. В качестве контрольных служили производственные серии с оптической концентрацией около 80 млрд/мл, разлитые по 2 мл. Всю вакцину лиофилизировали в аппарате LZ-45. Пайку ампул проводили под вакуумом.
Провели изучение жизнеспособности, повреждаемости микробных клеток в экспериментальных сериях чумной вакцины с объемом суспензии в ампуле 1 мл и концентрацией 1,9-109 м.к./мл в сравнении с традиционными коммерческими сериями вакцины чумной живой сухой, содержащими в ампуле 2 мл клеточной суспензии с концентрацией 7-1010 м.к./мл.
Показатель повреждаемости клеток, определяемый при электронной микроскопии, в исследуемых препаратах составил (3,4+0,5)% и был статистически достоверно ниже относительно контрольных образцов (9,7+1,2)% и ОСО (8,8+0,8)%.
Сравнительная характеристика жизнеспособности опытных (33,4+1,3)% и контрольных (26,8+0,6)% образцов чумной вакцины показала, что во все исследуемые сроки этот показатель был достоверно выше у вакцины со сниженной концентрацией микробных клеток. При этом жизнеспособность коммерческой вакцины отвечала требованиям документации лишь в течение одного года, в то время как опытные серии даже через три года хранения в большинстве своем превышали регламентированный показатель 25%, причем критерий достоверности различий жизнеспособности между опытными и контрольными сериями в этот срок исследования достиг наибольшей величины.
В дальнейшем, используя электронную микроскопию для оценки состояния микробных клеток, были изучены качественные характеристики экспериментальных серий чумной вакцины с различными показателями общей концентрации (от 50 до 100 млрд/мл) и объема суспензии в ампуле (1 и 2 мл). Одним из критериев оценки качества была повреждаемость микробов после лиофилизации.
84
Электронной микроскопией было показано, что существует зависимость между числом поврежденных клеток в вакцине по мере увеличения общей концентрации микробов в суспензии: 50, 75, 100 млрд/мл с одной стороны и довольно четкий параллелизм по этому показателю у суспензий с концентрацией 50 и 75 млрд/мл в зависимости от ее объема (1 и
2 мл) в ампуле.
На основании полученных данных сделано заключение о соответствии производственным стандартам (ОСО) по жизнеспособности микробных клеток и превосходству по показателю их повреждаемости в экспериментальных сериях вакцины чумной живой сухой.
Полученные результаты показали, что при одинаковых исходных условиях (культивирование, лиофилизация, хранение) вакцина с измененными тактико-техническими параметрами (концентрация микробных клеток в препарате 1-4х1010 м.к./мл) по основным показателям превосходит коммерческие образцы. Это послужило основанием для разработки биотехнологии и получения экспериментально-производственных серий вакцины чумной живой сухой со сниженным количеством человеко-доз в ампуле в условиях производственного цикла.
Были приготовлены 5 экспериментально-производственных серий препарата вакцины чумной живой сухой (для контроля в лаборатории препаратов против чумы и других особо опасных инфекций ГИСК им. Л.А. Тарасевича) с меньшим, по сравнению с регламентированным, количеством доз в ампуле, приготовленных в условиях производства вакцины в АКМ-Ш поверхностным методом выращивания с использованием всех регламентированных технологических этапов (действующая НД), и отличающихся тем, что на этапе сведения вакцинной суспензии концентрация микробных клеток доводится у части суспензии до параметров 1х1010- 4х1010 в 1 мл путем дополнительного внесения расчетного количества стабилизатора. Во время разлива вакцинной суспензии объем ее ограничивается 1 мл в ампуле.
85
Были изучены параметры жизнеспособности (39,7+1,8)%, термостабильности (8,9+0,7) сут и потери в массе при высушивании (1,02+0,23%) полученных экспериментально-производственных серий вакцины. Результаты показали соответствие по изучаемым параметрам экспериментально-производственных серий вакцины чумной живой сухой действующей НД.
Контроль иммуногенности в соответствии с действующей ФС на вакцину № 42-3877-99. Полученные данные (7254 м.к. для белых мышей и 1360 м.к. для морских свинок) означают, что ED50 экспериментальной вакцины была существенно ниже регламентированных показателей ФС (1-104 ж.м.к. для морских свинок и 4-104 ж.м.к. для белых мышей), т.е. иммуногенность ее весьма высока и превышает, как минимум, пятикратно крайние пределы, регламентированные нормативной документацией.
Помимо общепринятой методики, провели сравнительное изучение на белых мышах эффективности экспериментально-производственной и коммерческой вакцин в феномене «переживания», выраженной в LD50 вирулентного штамма и характеризующей иммуногенность вакцинного препарата, использованного для введения в смеси с вирулентным.



