Введение 3
Глава 1. Теоретические основы для включения элементов теории графов в математическую подготовку школьников 5
1.1. Элементы теории графов в школьном курсе математики 5
1.2. Дидактические условия для включения элементов теории графов в
математическую подготовку школьников 11
Выводы по первой главе 15
Глава 2. Методика обучения элементам теории графов обучающихся
7 класса в рамках курса по выбору «В стране графов» 16
2.1. Программа курса по выбору «В стране графов» для обучающихся
7 класса 16
2.2. Конспекты занятий курса по выбору «В стране графов» 21
Выводы по второй главе 58
Заключение 59
Библиографический список 61
ПРИЛОЖЕНИЯ 64
Приложение 1 Вариант парных карточек по теме: «Виды графов» 64
Федеральные государственные образовательные стандарты основного и среднего полного общего образования определили новые требования к результатам освоения основной образовательной программы, среди которых умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач [ФГОС ООО, 2010].
Спецификой теории графов, которая собственно и позволяет ставить вопрос о введении ее элементов в школьный курс математики, является возможность представить граф геометрически - в виде простого, удобного в обращении рисунка. При построении рисунков графов, соответствующих какому-то явлению, мы имеем дело с так называемым знаковым моделированием.
Поиск и разработка методик и технологий обучения школьников элементам теории графов на сегодня остается одной из актуальных проблем школьного математического образования.
Цель исследования: методическая разработка курса по выбору «В стране графов» для обучающихся 7 класса.
Объект исследования: математическая подготовка обучающихся 7 кл.
Предмет исследования: дидактические условия обучения курсу по выбору «В стране графов» обучающихся 7 класса.
Задачи исследования:
1) Проанализировать специальную литературу и имеющийся педагогический опыт по теме исследования.
2) Описать роль, место и значение элементов теории графов в математическом образовании школьников.
3) Охарактеризовать основные требования к проектированию и реализации программы курса по выбору в системе математической подготовки школьников.
4) Разработать методическое обеспечение для курса по выбору «В стране графов».
Настоящая квалификационная работа состоит из введения, двух глав, заключения, библиографического списка, приложения.
В ходе проведенного исследования мы пришли к выводу, что существуют возможности для включения элементов теории графов в содержание математической подготовки школьников. Одной из таких возможностей является включение в программу дополнительной подготовки по математике специального курса по выбору «В стране графов» для обучающихся 7 кл.
Простой язык теории графов позволяет решать многочисленные, разнообразные и довольно нетривиальные задачи дискретной математики.
Одной из особенностей теории графов, которая, собственно, и позволяет ставить вопрос о введении элементов теории графов в школьный курс математики, является возможность представить граф (как математическую модель или как отвлеченный образ) геометрический - в виде простого, удобного (имеется в виду удобного для человека) в обращении рисунка: вершины отождествляются с точками на плоскости, а ребра - с линиями, соединяющими вершины. Рисунок графа, являясь знаком, чувственно воспринимаемым материальным предметом, служит посредником между реальной действительностью и математической моделью. При изображении графа определенные свойства изучаемого явления моделируются с помощью простых знаков - точек (одного цвета или нескольких цветов) и отрезков (одного цвета или нескольких цветов, направленных или ненаправленных). При построении рисунков графов, соответствующих какому-то явлению, мы имеем дело с так называемым знаковым моделированием. В процессе познания рисунки графов, как чувственные образы, становятся носителями богатого смыслового содержания.
Перспективным и естественным является использование изобразительного языка графов в качестве служебных средств, при решении различных методических вопросов обучения математике.
В рамках нашего исследования нами были охарактеризованы основные дидактические условия для включения элементов теории графов в математическую подготовку школьников.
Разработана примерная программа курса по выбору «В стране графов» рассчитанная на 17 часов и, соответствующее методическое сопровождение - 9 конспектов занятий.
Изучение элементов теории графов на дополнительных занятиях по математике способствует формированию предметных и метапредметных результатов обучения, повышению познавательного интереса и воспитанию ценностного отношения к математическим знаниям.
В ходе проведённого исследования все основные задачи выполнены и цель достигнута.
1. Альсина К. Карты метро и нейронные связи. Теория графов. / Пер. с исп.- М.: Де Агостини, 2014 г.
2. Альпин Ю.А., Ильин С.Н. Задачи по дискретной математике: Учебно-
3. методическое пособие. — Казань: Казанский федеральный
университет, 2013. — 26 с
4. Андреев В.И. Педагогика творческого саморазвития. Казань, 1996. С.568
5. Березина Л. Ю. Графы и их применение. Пособие для учителей. - М.: просвещение, 1979.
6. Берж К. «Теория графов и ее применение», М, «Мир», 1980;
7. Богомолова О.Б. Логические задачи. 4-е изд., испр. и доп. - М. : БИНОМ. Лаборатория знаний, 2013. - 277с. :ил.
8. Большой энциклопедический словарь: в 2-х т. / Гл. ред. А.М. Прохоров. - Сов. энциклопедия, 1991
9. Болховитинов В. Н., Колтовой В. И., Лаговский И. К. Твое свободное время. М.: Детская литература, 1975.
10. Виленкин Н.Я., Жохов В.И. и др. Математика.5 класс. 31-е изд.,стер. - М: 2013. - 280с.
11. Виленкин Н.Я., Сурвилло Г.С. и др. Алгебра. 9 класс. С углубленным изучением математики. 7-е изд. - М.: 2006. - 368 с
12. Волкова С.В. Дидактические условия реализации учащимися личностных смыслов в процессе обучения. -Автореф. Дисс. К.п.н. - Брянск, 2001.
13. «В помощь учителю математики «, Йошкар-Ола, 1972 (ст. «Изучение элементов теории графов»)
14. Гарднер М. «Математические головоломки и развлечения», М. «Мир», 1972.
15. Глухова А.К, «Элементы теории графов в школьном курсе математики» , диссертация, Москва, 2016 г.
16. Жуковская Е.П. Дидактические аспекты организации факультативов [Электронный ресурс].- Режим доступа: http://festival.1september.ru.
... всего 38 источников