Предоставляется в ознакомительных и исследовательских целях
Европейские Математики XVIII века
Закажите новую по вашим требованиям
Представленный материал является образцом учебного исследования, примером структуры и содержания учебного исследования по заявленной теме. Размещён исключительно в информационных и ознакомительных целях.
Workspay.ru оказывает информационные услуги по сбору, обработке и структурированию материалов в соответствии с требованиями заказчика.
Размещение материала не означает публикацию произведения впервые и не предполагает передачу исключительных авторских прав третьим лицам.
Материал не предназначен для дословной сдачи в образовательные организации и требует самостоятельной переработки с соблюдением законодательства Российской Федерации об авторском праве и принципов академической добросовестности.
Авторские права на исходные материалы принадлежат их законным правообладателям. В случае возникновения вопросов, связанных с размещённым материалом, просим направить обращение через форму обратной связи.
📋 Содержание (образец)
1. Эйлер Леонард (1707 – 1783) 5
2. Лагранж (Lagrange) Жозеф Луи 8
3. Лаплас Пьер Симон (Laplace 1749-1827) 10
4. Готфрид Вильгельм Лейбниц (1646-1716) 13
Заключение 16
Список используемой литературы 18
📖 Введение (образец)
✅ Заключение (образец)
Критика метода бесконечно малых за плохую обоснованность быстро смолкла под давлением триумфальных успехов нового подхода. В науке, благодаря Ньютону, царила механика — все прочие взаимодействия считались вторичными, следствиями механических процессов. Развитие анализа и механики происходили в тесном переплетении; первым это объединение осуществил Эйлер, который убрал из ньютоновской механики архаичные конструкции и подвёл под динамику аналитический фундамент (1736). С этого момента механика стала прикладным разделом анализа. Процесс завершил Лагранж, чья «Аналитическая механика»[L 30] демонстративно не содержит ни одного чертежа. Одновременно анализ алгебраизировался и окончательно (начиная с Эйлера) отделился от геометрии и механики.
Главным методом познания природы становится составление и решение дифференциальных уравнений. После динамики точки настал черёд динамики твёрдого тела, затем — жидкости и газа. Прогрессу в этой области немало способствовал спор о струне, в котором участвовали ведущие математики Европы.
Теория тяготения Ньютона поначалу встречала трудности в описании движения Луны, однако работы Клеро, Эйлера и Лапласа ясно показали, что никаких дополнительных сил, кроме ньютоновских, в небесной механике нет.
Анализ распространяется на комплексную область. Аналитическое продолжение большинства функций проблем не вызвало, и были обнаружены неожиданные связи между стандартными функциями (формула Эйлера).[L 32] Затруднения встретились для комплексного логарифма, но Эйлер их успешно преодолел. Были введены конформные отображения, высказана гипотеза о единственности аналитического продолжения. Комплексные функции нашли даже применение в прикладных науках — гидродинамике, теории колебаний (Даламбер, Эйлер).
Далеко продвинулись теория и техника интегрирования. Входят в широкое употребление кратные интегралы (Эйлер, Лагранж), причём не только в декартовых координатах. Появляются и поверхностные интегралы (Лагранж, Гаусс). Усиленно разрабатывается теория дифференциальных уравнений, как обыкновенных, так и в частных производных. Математики проявляют исключительную изобретательность при решении дифференциальных уравнений в частных производных, для каждой задачи изобретая свои методы решения. Сформировалось понятие краевой задачи, возникли первые методы её решения.
В конце XVIII века было положено начало общей теории потенциала (Лагранж, Лаплас, Лежандр). Для .................



