Тип работы:
Предмет:
Язык работы:


Сорбенты в биохимических исследованиях

Работа №67336

Тип работы

Дипломные работы, ВКР

Предмет

химия

Объем работы52
Год сдачи2016
Стоимость4375 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
111
Не подходит работа?

Узнай цену на написание


Перечень условных обозначений 3
Введение 4
Обзор литературы 5
1. Определение сорбции и ее механизмы 5
2. Основные типы сорбентов и их применение для биохимических
исследований 6
2.1 Обращенно-фазовые сорбенты 6
2.2 Нормально -фазовые сорбенты 9
2.3 Ионообменные и хелатные сорбенты 10
2.4 Сорбенты, основанные на молекулярном распознавании (иммуно-
афинные сорбенты и полимеры с молекулярными отпечатками) 12
2.5 Сорбенты с ограниченно доступной поверхностью 14
2.6 Сорбенты смешанного типа 15
2.7 Другие сорбенты 17
3. Выбор сорбента и условий сорбции/десорбции 17
4. Варианты технической реализации процедуры сорбции 19
4.1 Классические способы 19
4.2 Миниатюризация процедуры извлечения 21
4.2.1 Способы извлечения в ТФМЭ 23
4.2.2 Сорбенты, используемые в ТФМЭ 24
4.2.3 Влияние условий сорбции 25
4.2.4 Применение ТФМЭ в биохимическом анализе 27
4.2.4.1 Токсиканты 27
4.2.4.2 Вещества с наркотическим действием 29
4.2.4.2.1 Амфетамины 29
4.2.4.2.2 Бензодиазепины 30
4.2.4.2.3 Барбитураты 30
4.2.4.2.4 Другие наркотические вещества 31
4.2.4.3 Вещества, исследуемые в клинической биохимии 32
Заключение 39
Список литературы 4


С увеличением интереса исследователей к изучению биохимических процессов, существует растущая необходимость анализа очень низких концентраций соединений, которые присутствуют с большим количеством мешающих веществ в крови, моче и других биологических образцах, являющихся сложными по составу. Часто в качестве предварительной стадии требуется пробоподготовка, которая занимает более 75 процентов времени анализа. С помощью нее количественно отделяют аналиты от мешающих компонентов, концентрируют их для увеличения чувствительности и переводят в подходящую для анализа форму. Для этой применяется целый ряд методов: центрифугирование, хроматографию, перегонку, сорбцию, фильтрацию, лиофильную сушку и осаждение. Привлекательным является применения различных сорбентов, позволяющих извлекать целевые вещества так, чтобы происходила сорбция только целевого вещества, а мешающие компоненты оставались в жидкой фазе. Мешающие компоненты отделяются, а целевые соединения десорбируют с использованием растворителя, подходящего для выбранного инструментального метода анализа. Альтернативным путем является сорбция мешающих компонентов на твердом сорбенте, при этом аналиты остаются в водной фазе, однако, не происходит концентрирования и из-за этого данных подход используется нечасто.
В настоящее время разработан широкий спектр сорбентов, извлекающих вещества различных классов: обращенно-фазовые, нормально-фазовые, ионообменные, хелатные и др.
Целью данной работы явилось рассмотрение основных классов сорбентов, их свойств, областей применения в биохимическом анализе. Также были описаны факторы, влияющие на выбор сорбента и условий сорбции, и варианты технической реализации процедуры экстракции, в том числе в миниатюризированном варианте.


Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


Использование сорбции на твердых сорбентах в биохимических исследованиях является эффективным инструментом для изучения различных биохимических процессов, в том числе для диагностики заболеваний, мониторинга токсикантов, попадающих в организм человека из внешней среды, исследования фармокинетики лекарственных веществ и т.д. В биохимическом анализе особенно часто сталкиваются с трудностями, возникающими из-за сложного состава анализируемого объекта. Следовательно, необходимо применение современных методов разделения и концентрирования, позволяющих не только избавиться от мешающего влияния компонентов пробы, но и повысить чувствительность анализа. На основе данной работы можно заключить, что разработанные методы твердофазного извлечения с успехом справляются с поставленной задачей. Более того, использование твердофазной микроэкстракции значительно упрощает процедуру анализа, повышает экспрессность и чувствительность, снижает количество используемых реагентов и органических растворителей. Совмещение ТФМЭ с газовой хроматографией позволяет вовсе избежать их использования, так как десорбция аналита осуществляется прямо в испарителе хроматографа.
В рамках данной работы были рассмотрены основные типы сорбентов, их свойства; примеры практического применения для решения важных практических задач, возникающих в биохимическом анализе; варианты технической реализации процедуры сорбции.



1. Hennion M-C. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A 1999; 856: 3- 54
2. Carson MC. Ion-pair solid-phase extraction. J Chromatogr A 2000; 885: 343-50
3. Thurman EM, Mills MS. Solid Phase Extraction: Principles and Practice. Chichester: Wiley, 1998
4. Huck CW, Bonn GK. Recent developments in polymer-based sorbents for solid-phase extraction. J Chromatogr A 2000; 885: 51- 72
5. Zief M, Kiser R. Solid Phase Extraction for Sample Preparation. Phillipsburg: J.T. Baker Inc., 1988
6. Martin P, Morgan ED, Wilson ID. Effect of carbon loading on the extraction properties of C-18 bonded silica used for solid-phase extraction of acidic and basic analytes. Anal Chem 1997; 69: 2972- 5
7. Li Y. et al. A novel approach to the simultaneous extraction and non¬targeted analysis of the small molecules metabolome and lipidome using 96-well solid phase extraction plates with column-switching technology // J. Chromatogr. A. 2015. Vol. 1409. P. 277-281.
8. Bouvier ESP, Iraneta PC, Neue UD, McDonald PD, Phillips DJ, Capparella M, et al. Polymeric reversed-phase SPE sorbents: characterization of a hydrophilic- lipophilic balanced SPE sorbent. LC-GC Int 1998; 11: 35- 40
9. Liska I. Fifty years of solid-phase extraction in water analysis: historical development and overview. J Chromatogr A 2000; 885: 3- 16
10. Hennion MC. Graphitized carbons for solid-phase extraction. J Chromatogr A 2000; 885: 73- 95
11. Ferrone V. et al. Bioanalytical method development for quantification of ulifloxacin, fenbufen and felbinac in rat plasma by solid-phase extraction (SPE) and HPLC with PDA detection // J. Pharm. Biomed. Anal. 2016. Vol. 123. P. 205-212.
12. Saito K., Kikuchi Y., Saito R. Solid-phase dispersive extraction method for analysis of benzodiazepine drugs in serum and urine samples // J. Pharm. Biomed. Anal. 2014. Vol. 100. P. 28-32.
13. Wang N. et al. Pipette tip solid-phase extraction and high-performance liquid chromatography for the determination of flavonoids from Epimedii herba in rat serum and application of the technique to pharmacokinetic studies // J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015. Vol. 990. P. 64-72.
14. Magnes C. et al. Polyamines in biological samples: Rapid and robust quantification by solid-phase extraction online-coupled to liquid chromatography-tandem mass spectrometry // J. Chromatogr. A. 2014. Vol. 1331. P. 44-51.
15. Kopf T., Schmitz G. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry // J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013. Vol. 938. P. 22-26.
16. Handley AG, McDowall RD. Solid phase extraction in organic analyses. In: Handley AG, ed. Extraction Methods in Organic Analyses. Shef.eld: Academic Press, 1999: 54- 73
17. Tomkova J., Ondra P., Valka I. Simultaneous determination of mushroom toxins a-amanitin, 0-amanitin and muscarine in human urine by solid-phase extraction and ultra-high-performance liquid chromatography coupled with ultra- high-resolution TOF mass spectrometry // Forensic Sci. Int. 2015. Vol. 251. P. 209¬213.
18. Arroyo-Manzanares N. et al. Determination of sulfonamides in serum by on-line solid-phase extraction coupled to liquid chromatography with photoinduced fluorescence detection // Talanta. 2015. Vol. 138. P. 258-262.
19. Stevenson D, Miller S, Wilson ID. Biological/pharmaceutical applications. In: Handley AG, ed. Extraction Methods in Organic Analyses. Shef.eld: Academic Press, 1999: 194- 220
20. Delaunay N, Pichon V, Hennion MC. Immunoaf.nity solid-phase extraction for the trace-analysis of low-molecular-mass analytes in complex sample matrices. J Chromatogr B 2000; 745: 15- 37
21. Stevenson D. Immuno-af.nity solid-phase extraction. J Chromatogr B 2000; 745: 39- 48
22. Godfrey MAJ. Immunoafinity extraction in veterinary residue analysis: a regulatory viewpoint. Analyst 1998; 123: 2501- 6
23. Andersson LI. Molecular imprinting: developments and applications in the analytical chemistry field. J Chromatogr B 2000; 745: 3- 13
24. Andersson LI. Molecular imprinting for drug bioanalysis. A review on the application of imprinted polymers to solid-phase extraction and binding assay. J Chromatogr B 2000; 739: 153- 73
25. Hwang C-C, Lee W-C. Chromatographic resolution of the enantiomers of phenylpropanolamine by using molecularly imprinted polymer as the stationary phase. J Chromatogr B 2001; 765: 45- 53
26. Bereczki A, Toloka'n A, Horvai G, Horva' th V, Lanza F, Hall AJ, et al. Determination of phenytoin in plasma by molecularly imprinted solid-phase extraction. J Chromatogr A 2001; 930: 31- 8
27. Mullet WM, Lai EPC. Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution. Anal Chem 1998; 70: 3636- 41
28. Martin P, Wilson ID, Morgan DE, Jones GR, Jones K. Evaluation of molecular-imprinted polymers for use in the solid phase extraction of propranolol from biological fluids. Anal Commun 1997; 34: 45- 7
29. Walshe M, Howarth J, Kelly MT, O’Kennedy R, Smyth MR. The preparation of a molecular imprinted polymer to 7-hydroxycoumarin and its use as a solid-phase extraction material. J Pharm Biomed Anal 1997; 16: 319- 25
30. Andersson LI. Efficient sample pre-concentration of bupivacaine from human plasma by solid-phase extraction on molecularly imprinted polymers. Analyst 2000;125:1515-7
31. Wu N. et al. A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples // J. Pharm. Anal. 2016. № Lc. P. 1-8.
32. Dramou P. et al. Development of novel amphiphilic magnetic molecularly imprinted polymers compatible with biological fluids for solid phase extraction and physicochemical behavior study // J. Chromatogr. A. 2013. Vol. 1317. P. 110-120.
33. Yan H. et al. Hybrid molecularly imprinted polymers synthesized with 3- aminopropyltriethoxysilane-methacrylic acid monomer for miniaturized solid-phase extraction: A new and economical sample preparation strategy for determination of acyclovir in urine // J. Chromatogr. A. 2014. Vol. 1346. P. 16-24.
34. Arabi M. et al. Synthesis and application of molecularly imprinted nanoparticles combined ultrasonic assisted for highly selective solid phase extraction trace amount of celecoxib from human plasma samples using design expert (DXB) software // Ultrason. Sonochem. ., 2016. Vol. 33. P. 67-76.
35. Zhang W., Chen Z. Preparation of micropipette tip-based molecularly imprinted monolith for selective micro-solid phase extraction of berberine in plasma and urine samples // Talanta. 2013. Vol. 103. P. 103-109.
36. Sheykhaghaei G. et al. Magnetic molecularly imprinted polymer nanoparticles for selective solid phase extraction and pre-concentration of Tizanidine in human urine // J. Chromatogr. B. 2016. Vol. 1011. P. 1-5.
37. Prasad B.B. et al. Molecularly imprinted micro solid-phase extraction technique coupled with complementary molecularly imprinted polymer-sensor for ultra trace analysis of epinephrine in real samples // Colloids Surfaces B Biointerfaces. 2014. Vol. 113. P. 69-76.
38. Shi Y. et al. Selective solid-phase extraction of cholesterol using molecularly imprinted polymers and its application in different biological samples. //
J. Pharm. Biomed. Anal. 2006. Vol. 42, № 5. P. 549-555.
39. Song R. et al. Molecularly imprinted solid-phase extraction of glutathione from urine samples // Mater. Sci. Eng. C. 2014. Vol. 44. P. 69-75.
40. Sun X. et al. Highly class-selective solid-phase extraction of bisphenols in milk, sediment and human urine samples using well-designed dummy molecularly imprinted polymers // J. Chromatogr. A. 2014. Vol. 1360. P. 9-16.
41. Yang J. et al. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples // Anal. Chim. Acta. 2015. Vol. 872. P. 35-45.
42. Serrano M. et al. On-line flow injection molecularly imprinted solid phase extraction for the preconcentration and determination of 1-hydroxypyrene in urine sanples // Talanta. 2016. P. 1-8.
43. 4. Nestic M. et al. Molecularly imprinted solid phase extraction for simultaneous determination of tetrahydrocannabinol and its main metabolites by gas chromatography-mass spectrometry in urine samples // Forensic Sci. Int. 2013. Vol. 231, № 1-3. P. 317-324.
44. Chrzanowska A.M., Poliwoda A., Wieczorek P.P. Surface molecularly imprinted silica for selective solid-phase extraction of biochanin A, daidzein and genistein from urine samples // J. Chromatogr. A. 2015. Vol. 1392. P. 1-9.
45. Majors RE. A review of modern solid-phase extraction. LC-GC Int 1998; 11: 8- 16
46. Du B. et al. A novel restricted access material combined to molecularly imprinted polymers for selective solid-phase extraction and high performance liquid chromatography determination of 2-methoxyestradiol in plasma samples // Talanta. 2014. Vol. 129. P. 465-472.
47. Yu Z, Westerlund D. Characterization of the precolumn BioTrap 500 C-18 for direct injection of plasma samples in a column-switching system. Chromatographia 1998; 47: 299- 304
48. Yu Z, Westerlund D. Direct injection of large volumes of plasma in a column-switching system for the analysis of local anaesthetics. II. Determination of bupivacaine in human plasma with an alkyldiol silica precolumn. J Chromatogr A 1996;725:149-55
49. Van der Hoeven RA, Hofte AJ, Frenay M, Irth H, Tjaden UR, van der Greef J, et al. Liquid chromatography- mass spectrometry with on-line solid-phase extraction by a restricted-access C18 precolumn for direct plasma and urine injection. J Chromatogr A 1997; 762: 193- 200
50. Ye L. et al. Restricted-access nanoparticles for magnetic solid-phase extraction of steroid hormones from environmental and biological samples. // J. Chromatogr. A. 2012. Vol. 1244. P. 46-54.
51. Franke JP, de Zeeuw RA. Solid-phase extraction procedures in systematic toxicological analysis. J Chromatogr B 1998; 713: 51- 9
52. Ferrer I, Barcelo' D, Thurman EM. Double-disk solid-phase extraction: simultaneous cleanup and trace enrichment of herbicides and metabolites from environmental samples. Anal Chem 1999; 71: 1009- 15
53. Degel F. Comparison of new solid-phase extraction methods for chromatographic identi.cation of drugs in clinical toxicological analysis. Clin Biochem 1996; 29: 529- 40
54. de Zeeuw RA, Wijsbeek J, Franke JP. SPEC disc solid-phase extraction for rapid broad-spectrum drug screening in urine. J Anal Toxicol 2000; 24: 97- 101
55. Polettini A, Groppi A, Vignali C, Montagna M. Fully-automated systematic toxicological analysis of drugs, poisons, and metabolites in whole blood, urine, and plasma by gas chromatography- full scan mass spectrometry. J Chromatogr B 1998; 713: 265- 79
56. Paterson S, Cordeo R, McCulloch S, Houldsworth P. Analysis of urine for drugs of abuse using mixed-mode solid-phase extraction and gas chromatography¬mass spectrometry. Ann Clin Biochem 2000; 37: 690- 700
57. Lee MR, Yu SC, Lin CL, Yeh YC, Chen YL, Hu SH. Solid-phase extraction in amphetamine and methamphetamine analysis of urine. J Anal Toxicol 1997; 21: 278- 82
58. Cooper GA, Oliver JS. Improved solid-phase extraction of methadone and its two major metabolites from whole blood. J Anal Toxicol 1998; 22: 389- 92
59. Woo H.I. et al. A simple and rapid analytical method based on solid-phase extraction and liquid chromatography-tandem mass spectrometry for the simultaneous determination of free catecholamines and metanephrines in urine and its application to routine clinical analysis // Clin. Biochem. 2016. Vol. 49, № 7-8. P. 573-579.
60. Chen H.-C., Wu C., Wu K.-Y. Determination of the maleic acid in rat urine and serum samples by isotope dilution-liquid chromatography-tandem mass spectrometry with on-line solid phase extraction // Talanta. 2015. Vol. 136, № 0. P. 9-14.
61. He H. et al. Measurement of catecholamines in rat and mini-pig plasma and urine by liquid chromatography-tandem mass spectrometry coupled with solid phase extraction // J. Chromatogr. B. 2015. Vol. 997. P. 154-161.
62. Penton ZE. Sample preparation for gas chromatography with solid-phase extraction and solid-phase microextraction. Adv Chromatogr 1997; 37: 205- 36
63. Larrivee ML, Poole CF. Solvation parameter model for the prediction of breakthrough volumes in solid-phase extraction with particle-loaded membranes. Anal Chem 1994; 66: 139- 46
64. Poole CF, Gunatilleka AD, Sethuraman R. Contributions of theory to method development in solid-phase extraction. J Chromatogr A 2000; 885: 17- 39
65. Wells DA. 96-Well plate products for solid-phase extraction. LC.GC Eur 1999; 12: 704- 15
66. Rossi DT, Zhang N. Automating solid-phase extraction: current aspects and future prospects. J Chromatogr A 2000; 885: 97- 113
67. Zhang H, Henion J. Quantitative and qualitative determination of estrogen sulfates in human urine by liquid chromatography/tandem mass spectrometry using 96-well technology. Anal Chem 1999; 71:3955- 64
68. C.L. Arthur, J. Pawliszyn. Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation. Anal. Chem., 1990; 62; 2145
69. D. Figeys, A. Ducrte, J.R. Yates, R. Aebersold. Protein identification by solid phase microextraction—capillary zone electrophoresis—microelectrospray— tandem mass spectrometry. Nat. Biotechnol., 1996; 14; 1579
70. C.W. Whang, J. Pawliszyn Solid phase microextraction coupled to capillary electrophoresis Anal. Commun., 1998; 35; 353
71. A. Medvedovici, P. Sandra, F. David. Construction of an interface for SPME-PCSFC J. High Resolut. Chromatogr.,1997; 20; 619
72. R. Eisert, J. Pawliszyn, Automated In-Tube Solid-Phase MicroextractionCoupled to High-Performance Liquid Chromatography, Anal. Chem. 69 (1997) 3140
73. Z.Y. Zhang, J. Pawliszyn, Headspace solid-phase microextraction, Anal. Chem. 65 (1993) 1843
74. Y. Liu, M.L. Lee, K.J. Hageman, Y. Yang, S.B. Hawthorne, Solid-PhaseMicroextraction of PAHs from Aqueous Samples Using Fibers Coated with HPLCChemically Bonded Silica Stationary Phases, Anal. Chem. 69 (1997) 5001. (1998) 137.
75. Y. Liu, Y.F. Shen, M.L. Lee, Porous Layer Solid Phase Micro extractionUsing Silica Bonded Phases, Anal. Chem. 69 (1997) 190.
76. F. Mangani, R. Cenciarini, Solid phase microextraction using fused silicafibers coated with graphitized carbon black, Chromatographia 41 (1995) 678.
77. T. Gorecki, J. Pawliszyn, Effect of Sample Volume on Quantitative Analysis by Solid-phase MicroextractionPart 1. Theoretical Considerations, Analyst 122 (1997) 1079.
78. T. Gorecki, A. Khaled, J. Pawliszyn, The effect of sample volume on quantitative analysis by solid phase microextraction Part 2. Experimental verification, Analyst 123 (1998) 2819.
79. K. Jinno, M. Taniguchi, M. Hayashida, Solid phase micro extraction coupled with semi-microcolumn high performance liquid chromatography for the analysis of benzodiazepines in human urine , J. Pharm. Biomed. Anal. 17 (1998) 1081.
80. W.E. Brewer, R.G. Galipo, S.L. Morgan, K.H. Habben, The Confirmation of Volatiles by Solid-Phase Microextraction and GC-MS in the Investigation of Two Traffic Fatalities, J. Anal. Toxicol. 21 (1997) 286.
81. T. Kumazawa, H. Seno, X.P. Lee, A. Ishii, O. Suzuki, K. Sato, Detection ofethanol in human body fluids by headspace solid-phase micro extraction(SPME)/capillary gas chromatography, Chromatographia 43 (1996) 393.
82. X.P. Lee, T. Kumazawa, K. Sato, H. Seno, A. Ishii, O. Suzuki, Improved
extraction of ethanol from human body fluids by headspace solid-phasemicroextraction with a carboxen-polydimethylsiloxane-coated fiber,
Chromatographia 47 (1998) 593.
83. X.P. Lee, T. Kumazawa, T. Kurosawa, I. Akiya, S. Furuta, K. Sato, Simple extraction of methanol in human whole blood by headspace SPME, Jpn. J. Forensic Toxicol. 16 (1998) 64.
84. Z.E. Penton, Blood Alcohol Determination with Automated Solid Phase Microextraction (SPME): A Comparison with Static Headspace Sampling, J. Can. Forensic Soc. 30 (1997) 7.
85. K. Takekawa, M. Oya, A. Kido, O. Suzuki, Analysis of cyanide in bloodby headspace solid-phase microextraction (SPME) and capillary gas chromatography, Chromatographia 47 (1998) 209.
86. A. Namera, K.Watanabe, M.Yashiki, T. Kojima, T. Urabe, Simple and sensitive analysis of nereistoxin and its metabolites in human serum using headspace solid-phase microextraction and gas chromatography-mass spectrometry, J. High Resolut. Chromatogr. 37 (1999) 77.
87. H. Seno, T. Kumazawa, A. Ishii, M. Nishikawa, K. Watanabe, H. Hattori, O. Suzuki, Determination of some carbamate pesticides in human body fluids by headspace solid phase microextraction and gas chromatography, Jpn. J. Forensic Toxicol. 14 (1996) 199.
88. X.P. Lee, T. Kumazawa, K. Sato, O. Suzuki, Detection of organophosphate pesticides in human body fluids by headspace solid-phase microextraction (SPME) and capillary gas chromatography with nitrogen¬phosphorus detection, Chromatographia 42 (1996) 135.
89. F.Y. Guan, K.Watanabe, A. Ishii, H. Seno, T. Kumazawa, H. Hattori, O. Suzuki, Headspace solid-phase microextraction and gas chromatographic determination of dinitroaniline herbicides in human blood, urine and environmental water, J. Chromatogr. B 714 (1998) 205.
90. M. Guidotti, M. Vitali, Determination of Urinary Pentachlorophenol bySPME and GC/MSJ. High Resolut. Chromatogr. 21 (1998) 137.
91. M. Guidotti, G. Ravaioli, M.Vitali, Total p-Chlorophenol Determination in Urine Samples of Subjects Exposed to Chlorobenzene, Using SPME and GC-MS, J. High Resolut. Chromatogr. 22 (1999) 427.
92. M.R. Lee, Y.C. Yeh,W.S. Hsiang, C.C. Chen, Application of solid-phase microextraction and gas chromatography-mass spectrometry for the determination of chlorophenols in urine, J. Chromatogr B 707 (1998) 91.
93. L. Rohrig, M. Puttmann, H.U. Meisch, Determination of persistent organochlorine compounds in blood by solid phase micro extraction and GC- ECD, Fresenius J. Anal Chem. 361 (1998) 192.
94. G. Gmeiner, C. Krassnig, E. Schmid, H. Tausch, Fast screening method for the profile analysis of polycyclic aromatic hydrocarbon metabolites in urine using derivatisation-solid-phase microextraction, J. Chromatogr. B 705 (1998) 132
95. B. He, G.B. Jiang, Z.M. Ni, Determination of methylmercury in biological samples and sediments by capillary gas chromatography coupled with atomic absorption spectrometry after hydride derivatization and solid phase microextraction,
J. Anal. Atom. Spectrosc. 13 (1998) 1141.
96. M. Guidotti, M. Vitali, Determination of Urinary Mercury and Methylmercury by Solid Phase Microextraction and GC/MS, J. High Resolut. Chromatogr. 21 (1998) 665.
97. L. Dunemann, H. Hajimiragha, J. Begerow, Simultaneous determination of Hg(II) and alkylated Hg, Pb, and Sn species in human body fluids using SPME-GC/MS-MS, Fresenius J. Anal. Chem. 363 (1999) 466.
98. C. Battu, P. Marquet, A.L. Fauconnet, E. Lacassie, G. Lachatre, Screening Procedure for 21 Amphetamine-Related Compounds in Urine Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry, J. Chromatogr. Sci. 36 (1998) 1.
99. F. Centini, A. Masti, I.B. Comparini, Quantitative and qualitative analysis of MDMA, MDEA, MA and amphetamine in urine by head-space/solid phase micro-extraction (SPME) and GC/MS, Forensic Sci. Int. 83 (1996) 161.
100. I. Koide, O. Noguchi, K. Okada, A. Yokoyama, H. Oda, S. Yamamoto, H. Kataoka, Determination of amphetamine and methamphetamine in human hair by headspace solid-phase microextraction and gas chromatography with nitrogen-phosphorus detection, J. Chromatogr. B 707 (1998) 99.
101. H.L. Lord, J. Pawliszyn, Method Optimization for the Analysis of Amphetamines in Urine by Solid-Phase Microextraction, Anal. Chem. 69 (1997) 3899.
102. N. Nagasawa, M. Yashiki, Y. Iwasaki, K. Hara, T. Kojima, Rapid analysis of amphetamines in blood using head space-solid phase microextraction and selected ion monitoring, Forensic Sci. Int. 78 (1996) 95.
103. M. Yashiki, T. Kojima, T. Miyazaki, N. Nagasawa, Y. Iwasaki, K. Hara, Rapid analysis of amphetamines in blood using head space-solid phase microextraction and selected ion monitoring, Forensic Sci. Int. 76 (1995) 169.
104. I. Koide, O. Noguchi, K. Okada, A. Yokoyama, H. Oda, S. Yamamoto, H. Kataoka, Determination of amphetamine and methamphetamine in human hair by headspace solid-phase microextraction and gas chromatography with nitrogen-phosphorus detection , J. Chromatogr. B 707 (1998) 99.
105. H.G. Ugland, M. Krogh, K.E. Rasmussen, Aqueous alkylchloroformate derivatisation and solid-phase microextraction: determination of amphetamines in urine by capillary gas chromatography, J. Chromatogr. B 701 (1997) 29.
106. S.W. Myung, H.K. Min, S. Kim, M. Kim, J.B. Cho, T.J. Kim Determination of amphetamine, methamphetamine and dimethamphetamine in Human Urine by Solid-Phase Microextraction (SPME)-Gas Chromatography/Mass Spectrometry, J. Chromatogr. B 716 (1998) 359.
107. K. Ameno, C. Fuke, S. Ameno, H. Kinoshita, I. Ijiri, Application of a Solid-Phase Microextraction Technique for the Detection of Urinary Methamphetamine and Amphetamine by Gas Chromatography, J. Can. Forensic Soc. 29 (1996) 43.
108. H. Seno, T. Kumazawa, A. Ishii, K.Watanabe, H. Hattori, O. Suzuki, Detection of benzodiazepines in human urine by direct immersion SPME-GC, Jpn. J. Forensic Toxicol. 15 (1997) 16.
109. F.Y. Guan, H. Seno, A. Ishii, K.Watanabe, T. Kumazawa, H. Hattori, O. Suzuki, Solid-Phase Microextraction and GC-ECD of Benzophenones for Detection of Benzodiazepines in Urine, J. Anal. Toxicol. 23 (1999) 54.
110. M. Krogh, H. Grefslie, K.E. Rasmussen, Solvent-modified solid-phase microextraction for the determination of diazepam in human plasma samples by capillary gas chromatography, J. Chromatogr. B 689 (1997) 357.
111. K. Jinno, M. Taniguchi, Chromatography 18 (1998) 244.
112. K. Jinno, M. Taniguchi, H. Sawada, M. Hayashida, Microcolumn liquid chromatography coupled with solid phase micro extraction (SPME/micro-LC) for the analysis of benzodiazepines in human urine, Analusis 26 (1998) 27.
113. K. Jinno, Y. Han, H. Sawada, M. Taniguchi, Capillary electrophoreticseparation of toxic drugs using a polyacrylamide-coated capillary, Chromatographia 46 (1997) 309
114. K. Jinno, H. Sawada, Y. Han, Drug analysis by capillary electrophoretic methods , Biomed. Chromatogr. 12 (1998) 126.
115. B.J. Hall, J.S. Brodbelt, Determination of barbiturates by solid-phase microextraction (SPME) and ion trap gas chromatography-mass spectrometry, J. Chromatogr. A 777 (1997) 275.
116. S. Li, S.G. Weber, Determination of Barbiturates by Solid-Phase Microextraction and Capillary Electrophoresis, Anal. Chem. 69 (1997) 1217.
117. M. Chiarotti, R. Marsili, Gas chromatographic analysis of methadone in urine samples after solid phase microextraction , J. Microcol. Sep. 6 (1994) 577.
118. B.J. Hall, M. SatterfieldDoerr, A.R. Parikh, J.S. Brodbelt Determination of Cannabinoids in Water and Human Saliva by Solid-Phase Microextraction and Quadrupole Ion Trap Gas Chromatography/Mass Spectrometry, Anal. Chem. 70 (1998) 1788.
119. R.S. Strano, M. Chiarotti, Solid-Phase Microextraction for Cannabinoids Analysis in Hair and Its Possible Application to Other Drugs, J. Anal. Toxicol. 23 (1999) 7.
120. J. Tytgat, P. Daenens, Solvent-free sample preparation by headspace solid-phase microextraction applied to the tracing of n -butyl nitrite abuse, Int.
J. Legal Med. 109 (1996) 150.
121. J.T. Liu, P. Cheng, O. Suzuki, Solid-phase microextraction (SPME) of drugs and poisons from biological samples, Forensic Sci. Int. 97 (1998) 93.
122. F. Degel, Comparison of new solid-phase extraction methods for chromatographic identification of drugs in clinical toxicological analysis, Clin. Biochem. 29 (1996) 529.
123. O. Suzuki, H. Seno, A. Ishii, Analytical toxicology, Forensic Sci. Int. 80 (1996) 137.
124. C. Kroll, H.H. Borchert, Solid phase microextraction (SPME) of sample preparation during of a complex biological matrix in biotransformation studies, Pharmazie 53 (1998) 172
125. T. Felix, B.J. Hall, J.S. Brodbelt, Determination of benzophenone-3 andmetabolites in water and human urine by solid-phase microextraction and quadrupoleion trap GC-MS, Anal. Chim. Acta 371 (1998) 195
126. E.D. Conte, D.W. Miller, A solid phase microextraction-electrodeposition device for the determination of putrescine and cadaverine by high resolution gas chromatography, J. High Resolut. Chromatogr. 19 (1996) 294.
127. C. Grote, J. Pawliszyn, Solid-Phase Microextraction for the Analysis ofHuman Breath, Anal. Chem. 69 (1997) 587
128. L.S. DeBruin, P.D. Josephy, J.B. Pawliszyn, Solid-Phase Microextractionof Monocyclic Aromatic Amines from Biological Fluids, Anal. Chem. 70 (1998) 1986.
129. L.S. DeBruin, J.B. Pawliszyn, P.D. Josephy, Detection of MonocyclicAromatic Amines, Possible Mammary Carcinogens, in Human Milk , Chem. Res. Toxicol. 12 (1999) 78.
130. G.A. Mills, V. Walker, H. Mughal, Quantitative determination oftrimethylamine in urine by solid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. B 723 (1999) 281.
131. H.M. Liebich, E. Gesele, J. Woll, Urinary organic acid screening by solid-phase microextraction of the methyl esters, J. Chromatogr. B 713 (1998) 427
132. M. Moder, H. Loster, R. Herzschuh, P. Popp, Determination of urinary acylcarnitines by ESI-MS coupled with solid-phase microextraction (SPME), J. Mass Spectrom. 32 (1997) 1195
133. S.W. Myung, M. Kim, H.K. Min, F.A. Yoo, K.R. Kim, Determination ofhomocysteine and its related compounds by solid-phase microextraction-gaschromatography-mass spectrometry J. Chromatogr. B 727 (1999) 1.
134. T. Kumazawa, H. Seno, X.P. Lee, A. Ishii, S.K. Watanabe K. Sato, O. Suzuki, Extraction of methylxanthines from human body fluids by solid-phase microextraction Anal. Chim. Acta 387 (1999) 53.
135. Theodoridis G., Koster E.H., de Jong G.J. // J. Chromatogr. B. Biomed. Sci. Appl. 2000. Vol. 745, № 1. P. 49-82.
136. Walker V., Mills G.A. // Ann. Clin. Biochem. 2002. Vol. 39, № 5. P. 464-477.


Работу высылаем на протяжении 30 минут после оплаты.



Подобные работы


©2025 Cервис помощи студентам в выполнении работ