Теория автоматического регулирования изучается во всех высших технических учебных заведениях в качестве одной из базовых дисциплин. На ее основе в дальнейшем читаются такие курсы, как теория автоматического управления, автоматизированные системы переработки информации, управление технологическими и организационно – экономическими процессами, теория автоматизированного проектирования систем и их математическое обеспечение, теория принятия инженерных решений, а также целый ряд дисциплин специального назначения. Объекты и устройства систем регулирования отличаются по своей физической природе и принципам построения, поэтому проектировщику необходимо не только иметь хорошую подготовку в области механики, электротехники, электроники, но и уметь учитывать специфические особенности объекта. С целью овладения практическими навыками использования методов теории автоматического регулирования будущие специалисты в процессе обучения выполняют домашние задания, курсовые и дипломные работы по проектированию систем управления конкретными объектами.
Трудность выполнения проектных работ в значительной степени определяется сложностью математического аппарата, используемого при описании объектов и систем автоматического регулирования (САР). Для непрерывных объектов с сосредоточенными и распределенными параметрами – это обыкновенные дифференциальные и интегральные уравнения и дифференциальные уравнения в частных производных соответственно; а для объектов информация с которых снимается в дискретные моменты времени, - разностные уравнения. В такой форме описываются в частности, и процессы в управляющих вычислительных машинах, получивших к настоящему времени весьма широкое распространение в САР.
Теория автоматического управления и регулирования – наука, которая изучает процессы управления, методы их исследования и основы проектирования автоматических систем, работающих по замкнутому циклу, в любой области техники. Целью данной работы является проектирование системы автоматического управления (САР) среднеквадратической температурой в области резания. Данная САР должна поддерживать температуру в области резания на заданном уровне с определенной точностью и отвечать требованиям точности и быстродействия. Метод анализа и синтеза САР, примененный в данной работе - это метод с использованием логарифмических частотных характеристик (ЛЧХ) системы. Он является наиболее удобным, благодаря простоте, наглядности и точности, и поэтому используется в данной работе.
Задание на курсовую работу.
Оптимальная температура в зоне резания обеспечивает минимум интенсивности изнашивания режущего инструмента. При точении жаропрочного сплава ХН77ТЮР резцом ВК6М с параметрами заточки rв=1 мм; =0; =1=100; =1=450 оптимальная температура 0 составляет 7200С. Температура в зоне резания для данной пары «инструмент-деталь» определяется выражением:
0 = 267*(V^0.384)*(S^0.132)*(tп^0.098), 0С (1)
Для поддержания температуры в зоне резания на уровне 0 с заданной точностью +-3% изменяем V, регулируя скорость вращения двигателя шпинделя n дш, при неизменном задании Sз.
Произвести синтез САР температуры резания с запасами устойчивости по фазе =500, по модулю L6 дб, обеспечивающей заданную точность поддержания температуры, при заданных величинах возмущений.
Данные: вариант 62
Двигатель 2ПН180LYХЛ4, мощность 7.1 кВт, напряжение 110 В, Rя=0.065 Ом, Lя=2.25 мГн, Jном=0.23 кг*м^2.
Vд=20 м/мин, Sз=0,11 мм/об, nном=750 об/мин, КПД=80 %,
t п мин=0.5 мм, t п макс=0,8 мм.
Тду=0.0 с. Тпу=0.009 с.
Преобразователь энергии: Т1= 0.103 с., Т2=0.170 с.
Тс=0.0 с.
Была спроектирована система автоматического управления температурой в области резания. Система удовлетворяет всем требуемым параметрам. Выбранный и использованный в проектировании метод с использованием ЛЧХ очень удобен благодаря своей простоте, наглядности и точности, что позволило сравнительно легко провести анализ и синтез САР. Мы получили систему, отвечающую всем поставленным требованиям, следовательно поставленная задача выполнена.
Бесекерский В.А. «Сборник задач по теории автоматического регулирования и управления» - М.: Наука, 1978г.
2. Топчеев Ю.И. «Атлас для проектирования систем автоматического регулирования» - М.: Машиностроение, 1989г.
3. Копылов И. П. Справочник по электрическим машинам, том 1. Москва Энергоатомиздат, 1988.
4. А.А.Воронов “Основы теории автоматического регулирования и управления”, М., Высшая школа, 1997.