ВВЕДЕНИЕ
1 Постановка задачи
2 Обобщенная постановка задачи
3 Построение разностной схемы
4 Построение конечно-разностных аппроксимаций
5 Линеаризация задачи
6 Подстановка задачи на собственные значения....
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ..
Приведем сначала общие сведения о композиционных материалах. Композиционный материал — неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.
Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.
В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает грещиностойкость материала, и в композитах, в отличие от металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.
Преимущества композиционных материалов:
• Высокая удельная прочность
• Высокая жёсткость (модуль упругости 130...140 ГПа)
• Высокая износостойкость
• высокая усталостная прочность
Высокая коррозионная стойкость, способность к восприятию ударных нагрузок, отличное качество поверхности, красивый внешний вид
обусловили широкое применение композиционных материалов практически во всех отраслях промышленности.
Видное место занимают эти материалы в производстве изделий для автомобильного и городского транспорта. Из них изготавливают корпуса легковых автомобилей, автобусов, детали внутреннего интерьера, кабины грузовиков, баки для горючего, цистерны для перевозки жидких и сыпучих грузов, корпуса и детали внутреннего интерьера трамваев и автобусов.
Широкое применение нашли композиционные материалы в авиационной и ракетно-космической технике, где используются такие их свойства, как высокая удельная прочность и стойкость к воздействию высоких температур, стойкость к вибрационным нагрузкам, малый удельный вес. Из этих материалов изготавливаются корпусные детали и детали внутреннего интерьера.
Развитие промышленности композитов в районе Персидского залива происходит чрезвычайно быстро. Композиционные материалы применены в одном из наиболее престижных проектов в регионе - строительстве гостиницы Jumeirah Reach Tower. Гостиница Jumeirah Reach Tower, строительство которой уже закончено в Дубай, как объявляют, является самым высоким зданием гостиницы в мире. Ее высота 321 метр, это выше, чем Эйфелева башня в Париже. Приблизительно 33 000 квадратных метров сэндвичевых панелей соединяют гостиничные номера и гигантский, почти 200 метров высотой атриум. Панели произведены из композиционных материалов. Огнестойкая смола и гелькоут были спроектированы и полностью проверены для использования в этом проекте. Рекомендация и опыт этого проекта, как ожидается, вызовет значительный интерес в строительной промышленности.
Настоящий переворот совершили композиционные материалы в области сельского хозяйства. Антикоррозионные свойства этих материалов позволяют применять их там, где не выдерживают другие материалы. Это элементы животноводческих ферм, емкости для хранения минеральных удобрений, отходов, сельскохозяйственных заготовок. Композиционные материалы используются для изготовления кузовов сельскохозяйственной техники. Это позволяет значительно сэкономить средства не только при производстве, но и в процессе эксплуатации, так как в межсезонье трактора, уборочные машины не требуют затрат на обслуживание кузовных деталей, а срок службы этих деталей намного больше.
Одной из все более расширяющихся областей применения композиционных материалов является мостостроение. Использование стеклопластика открывает перспективный путь строительства мостов из новых материалов. Рассматриваемое строительство — мост длиной 40 метров, протянутый поперек одной из наиболее загруженных железных дорог в Дании. Изготовлен первый композитный мост, специально разработанный, для создания железнодорожных переходов. Ключевым условием создания моста, для одной из наиболее загруженных железных дорог Дании, было то, что он должен был быть установлен в самые сжатые сроки. В то же время сооружение должно было соответствовать определенным практическим и эстетическим критериям. Мост был смонтирован за 16 часов. Работа была выполнена ночью. Мост состоял из трех компонентов, которые были установлены на опоры с болтами - кстати, единственные элементы моста, требующие соединений.
Композиционные материалы будут все больше и больше использоваться как материал в наземном строительстве. Налицо многочисленные преимущества: мосты из композиционных материалов, которые требуют только косметического обслуживания в течение более чем 50 последующих лет. Подобный мост, построенный из стали весил бы 28 тонн и нуждался в замене некоторых частей каждые 25 лет. То же самое применимо и к железобетонному мосту, который весил бы 90 тонн. Одно из главных преимуществ конструкций из композитов, имеющих небольшую массу, состоит в том, что они требуют меньших, менее дорогих опор. Кроме того, они не подвержены коррозии. Мост разработан из стандартных профилей и может производиться по более низкой стоимости, чем аналогичный стальной или бетонный мост.
Новый сложный мост был построен в Швейцарских Альпах прошлой осенью. Этот мост состоит из двух элементов, весящих по 900 кг, которые были установлены при помощи вертолета. Элементы были склеены и соеденены болтами вместе. Мост, собранный из стали, едва ли смог бы транспортироваться вертолетом. Еще одно преимущество проекта состоит в том, что мост может быть легко демонтирован в случае весенних наводнений.
В оборонной промышленности композиционные материалы сыграли важную роль в стратегии и направлении новейших разработок. Так защитные каски, бронежилеты, традиционно изготавливаемые во всех странах многие годы из металла, в настоящее время также изготавливаются из композиционных материалов. Скоростные суда, транспортные корабли, самолеты невидимки, все это создано только благодаря использованию композиционных материалов, постоянному поиску новых материалов и технологий.
В очень большом количестве композиционные материалы используются в нефтеперерабатывающей промышленности. В настоящее время из этих материалов изготавливают элементы нефтяных платформ, трубы для псфте- и газопроводов.
Одной из разновидностей композиционных материалов являются многослойные, в частности, трехслойные конструкции. Трехслойная конструкция представляет собой систему, которая состоит из двух внешних сравнительно тонких слоев и среднего, более толстого слоя. Внешние слои называются несущими, а внутренний слой - заполнителем (рис. 1).
Несущие слои воспринимают продольные нагрузки (растяжение, сжатие, сдвиг) в своей плоскости и поперечные изгибающие моменты. Заполнитель воспринимает поперечные силы при изгибе и обеспечивает совместную работу и устойчивость несущих слоев. Способность заполнителя воспринимать нагрузку в плоскости несущих слоев зависит от конструкции заполнителя и его жесткостных характеристик. Элементы каркаса обеспечивают местную жесткость конструкции при действии сосредоточенных усилий и в местах крепления повышают сопротивление усталости. Трехслойные элементы при малом весе обладают повышенной жесткостью на изгиб, что позволяет получить значительный выигрыш в весе для конструкций, воспринимающих сжимающие усилия. Кроме того, во многих случаях многослойные пакеты обладают высокими теплоизолирующими и радиотехническими свойствами, что является немаловажным фактором при эксплуатации ряда современных изделий различного назначения. Опыт эксплуатации и отработки объектов с применением трехслойных пакетов показал высокую эффективность трехслойных конструкций, а порой - их незаменимость.
Впервые трехслойная конструкция была применена в 1845 г. английским инженером Р. Стефенсоном при строительстве железнодорожного моста. Интенсивное развитие облегченных конструкций вызвано прогрессом в авиации и в космонавтике. В 40-х годах 20 столетия начали появляться первые самолеты с трехслойными силовыми элементами. Сегодня трехслойные конструкции находят все более и более широкое применение в промышленности и в народном хозяйстве. Трехслойные конструкции могут быть самыми разнообразными - в виде стеновых панелей и плит перекрытия, переборок, балок, оболочек и т. п.
Наряду с различными физическими и механическими свойствами, закладываемыми в процессе проектирования того или иного изделия, в трехслойных конструкциях можно совместить ряд важных функциональных свойств, присущих различным системам.
Так, например, при проектировании элементов конструкции, подвергающихся сильным тепловым нагрузкам с внешней стороны (обтекатели ракет-носителей, спускаемые с орбиты космические аппараты) логично сделать внешний несущий слой из материала, выдерживающего большие тепловые потоки. Для внутреннего слоя целесообразно использовать менее теплостойкие материалы, но с более высокими прочностными характеристиками, так как тепловые потоки от внешнего слоя к внутреннему слою ослабевают, проходя через заполнитель, изготовленный из материала, обладающего большой теплоемкостью. То есть конструкция обтекателя в данном случае совмещает в себе свойства как несущие (механическое нагружение), так и свойства пассивной теплозащиты.
Многофункциональностью обладают и трехслойные стеновые панели, к которым наряду с конструктивными требованиями предъявляют теплоизоляционные и звукоизоляционные свойства.
При использовании такого типа конструкций необходимо производить расчеты трехслойных конструкций с несимметричной структурой, имеющей как геометрическую, так и физическую несимметрию несущих слоев по отношению друг к другу. Но бывают случаи, когда использования пассивной теплозащиты недостаточно, особенно на конструкциях, предназначенных для многоразового использования. Применение трехслойных конструкций с различными типами заполнителя может помочь и в данном случае.
Наряду с механическими и тепловыми свойствами трехслойных конструкций видится их широкое применение в различных изделиях с целью шумоизоляции, радиопоглощения, в конструкциях, ставящих цель предотвращения сквозного проникновения тех или иных предметов (например, защита от метеоритного, осколочного или пулевого проникновения). Благодаря высокому коэффициенту внутреннего поглощения энергии, спроектированные соответствующим образом трехслойные пакеты, при заданных критических нагрузках могут эффективно исполнять роль пластического амортизатора, что имеет большое практическое значение в различных отраслях техники.
Таким образом, говоря о многофункциональности трехслойных конструкций, следует более тщательно подходить к их проектированию, добиваясь, чтобы элементы одной конструкции совмещали в себе различные свойства, тем самым, отказываясь от проектирования дополнительных систем, узлов и агрегатов, повышать эффективность проектируемого изделия.
В связи с тем, что при работе конструкция испытывает нагрузки, разные по величине в различных направлениях, изготовление современных крупногабаритных изделий немыслимо без применения армированных пластмасс в качестве материалов для несущих слоев. Такие материалы имеют заданные свойства в определенном направлении.
В настоящей работе изучается в одномерной постановке геометрически нелинейная задача о продольно-поперечном изгибе трехслойной пластины с трансверсально-мягким заполнителем. Для описания напряженно-деформированного состояния в несущих слоях используются уравнения нелинейной модели Кирхгофа - Лява, в заполнителе - уравнения теории упругости, упрощенные в рамках принятой модели трансверсально-мягкого слоя и проинтегрированных по толщине с удовлетворением условий сопряжения слоев по перемещениям в поперечном направлении.
Обобщенная постановка сформулирована в виде операторного уравнения в пространстве Соболева, которое возникает при вычислении стационарных точек обобщенного функционала Лагранжа, для описания напряженно-деформированного состояния трехслойной пластины с трансверсально-мягким заполнителем.
Для решения задачи можно использовать предложенный в двухслойный итерационный процесс.
Проведена линеаризация задачи. Сформулирована задача на собственные значения с целью нахождения критической нагрузки.
В данной работе об исследовании устойчивости трехслойной пластины была изучена обобщенная постановка геометрически нелинейной одномерной задачи о равновесии трехслойной пластины с трансверсально - мягким заполнителем. Был изучен необходимый список литературы, и методы, необходимые для достижения поставленной задачи.
Также была построена конечно-разностная аппроксимация,
Была проведена линеаризация задачи, а также была построена задача на собственные значения с нелинейным вхождением параметра.
1. Бадриев И.Б., Макаров М.В., Паймушин В.Н. Геометрически нелинейная задача о продольно-поперечном изгибе трехслойной пластины с трансверсально-мягким заполнителем / Ученые записки Казанского университета -2016. Том 158, Книга 4.
С"') 2. Карчевский, М.М. Лекции по уравнениям математической
физики [Текст]: Учебное пособие / М.М. Карчевский. - 2-е изд., испр. - СПб.: Издательство «Лань», 2016. - 164 с.
3. Тихонов, А.Н. Уравнения математической физики [Текст] /
А.Н. Тихонов, А.А. Самарский. - М.: Изд-во МГУ, 2004. -798 с.
4. Карчевский, М.М.,Ляшко А.Д. Разностные схемы для нелинейных задач математической физики [Текст]: Учебное пособие - Казанский Федеральный университет, Казань -1976 г.
5. Бадриев И.Б. Построение интерполяционных и сглаживающих сплайнов: Методическая разработка - Казань -1990 г.
6. Бадриев И.Б.,Р.Р Шагидуллин Практика на ЭВМ: Методическая разработка - Казань -1988 г.