РАЗРАБОТКА МАРШРУТА ПРОЕКТИРОВАНИЯ ЭЛЕКТРОННЫХ УСТРОЙСТВ (НА ПРИМЕРЕ НАВИГАЦИОННОГО МОДУЛЯ)
|
Введение
1 Анализ существующих методов и средств проектирования электронных
устройств 8
1.1 Элементная база микроэлектронной техники 8
1.2 Маршруты проектирования СБИС, ПЛИС 16
1.3 Модельно-ориентированное проектирование 23
1.4 Современные среды моделирования и проектирования 25
1.5 Концепция сквозного проектирования навигационного модуля 32
2 Особенности проектирования РЭА навигационного назначения 36
2.1 Методы навигационных определений 36
2.2 Функциональное моделирование навигационного модуля 47
2.3 Протоколирование результатов функционального моделирования средств
угломерной спутниковой навигации 50
3 Автоматизация проведения исследовательских испытаний навигационного
модуля 53
3.1 Аппаратное обеспечение проектирования и испытаний навигационного
модуля 53
3.2 Программное обеспечение проектирования и испытаний навигационного
модуля 55
3.3 Организация сквозного проектирования навигационного модуля на основе
автоматизированной системы поддержки проектирования РЭА 58
Заключение 71
Список использованных источников 72
1 Анализ существующих методов и средств проектирования электронных
устройств 8
1.1 Элементная база микроэлектронной техники 8
1.2 Маршруты проектирования СБИС, ПЛИС 16
1.3 Модельно-ориентированное проектирование 23
1.4 Современные среды моделирования и проектирования 25
1.5 Концепция сквозного проектирования навигационного модуля 32
2 Особенности проектирования РЭА навигационного назначения 36
2.1 Методы навигационных определений 36
2.2 Функциональное моделирование навигационного модуля 47
2.3 Протоколирование результатов функционального моделирования средств
угломерной спутниковой навигации 50
3 Автоматизация проведения исследовательских испытаний навигационного
модуля 53
3.1 Аппаратное обеспечение проектирования и испытаний навигационного
модуля 53
3.2 Программное обеспечение проектирования и испытаний навигационного
модуля 55
3.3 Организация сквозного проектирования навигационного модуля на основе
автоматизированной системы поддержки проектирования РЭА 58
Заключение 71
Список использованных источников 72
Процессы проектирования и производства изделий микроэлектроники нуждаются в децентрализации и унификации, что связано с непрерывным развитием информационных технологий и повсеместной интенсивной информатизацией проектной деятельности. Такие факторы являются предпосылкой для создания комплексной информационной среды поддержки процессов проектирования. При этом одним из ключевых этапов такой среды является проектирование электронных изделий на функциональном уровне, обеспечивающее оптимальность выбранных параметров, автоматизацию проводимых исследований и получение образца электронного устройства на выбранной элементной базе (программируемые логические интегральные схемы, микропроцессоры, микроконтроллеры, логические схемы управления и т. п.)
Проектирование как целенаправленный процесс следует вести согласно определенным правилам и с применением выбранных методов и технологий. Такой маршрут проектирования служит основным регламентом выполнения проектных процедур - от разработки технического задания на электронное устройство до разработки прикладного программного обеспечения и микропроцессорных модулей. Широкие возможности по реализации подобных маршрутов дает использование современных программных средств моделирования и проведения численного эксперимента, например, пакет прикладных программ Matlab, модуль Simulink, система проведения экспериментальных исследований в реальном времени NI Lab VIEW.
Маршрут проектирования, являющийся предметом исследований в работе, будет служить основой для организации среды поддержки процессов проектирования электронных устройств на базе стандартных интегральных вычислительных компонентов. В качестве прикладного микроэлектронного устройства рассматривается навигационный модуль, предназначенный для первичной обработки цифровых сигналов навигационных космических
аппаратов ГЛОНАСС/GPS' и подготовки информации для последующего решения навигационной задачи. Разработка маршрута проектирования будет заключаться в создании комплекса взаимосвязанных функциональных моделей в среде Matlab, имитирующих работу навигационного модуля в различных режимах, отладке и испытании моделей, адаптации моделей для решения задачи автоматизированного синтеза HDL-кода.
Цель работы - разработка маршрута автоматизированного проектирования электронных устройств на основе интеграции системы функционального моделирования и измерительно-вычислительного комплекса.
Для достижения поставленной цели можно сформулировать следующие задачи:
- анализ существующих подходов, методов и средств функционального моделирования радиоэлектронной аппаратуры (РЭА);
- разработка концепции автоматизированного сквозного проектирования РЭА;
- создание комплекса взаимосвязанных программных моделей электронного устройства в среде Matlab;
- проведение испытаний разработанных моделей и их адаптация для решения задачи автоматизированного синтеза HDL-кода;
- проектирование и отладка автоматизированного рабочего места проведения исследовательских испытаний электронной аппаратуры.
В диссертации использованы методы математического и имитационного моделирования, методы объектно-ориентированного анализа и проектирования, методы определения пространственной ориентации, определения углов Эйлера, методы разрешения фазовой неоднозначности.
Научная новизна диссертационной работы состоит в следующем:
1. Разработана модель гибкого проектирования РЭА на основе интеграции системы функционального моделирования и измерительно¬вычислительного комплекса реального времени.
2. Предложена методика проектирования радиоэлектронных устройств, основанная на использовании разработанных средств организации, технологического и методического сопровождения процесса проектирования и проведения испытаний РЭА.
Предложенный маршрут проектирования является основой для организации среды поддержки процессов проектирования электронных устройств на базе стандартных интегральных компонентов и предназначен для поддержки процессов проектирования электронных устройств в части:
- анализа структуры и параметров электронного устройства;
- проведения численных экспериментов (испытаний) моделей электронных устройств;
- интерпретации результатов численных экспериментов;
- автоматизации синтеза HDL-кода из моделей Simulink для последующей прошивки программируемых логических интегральных схем.
Магистерская диссертация состоит из введения, трех разделов, заключения и списка использованной литературы.
Первая глава содержит анализ методов проектирования электронных устройств. Рассмотрены существующие маршруты проектирования СБИС, ПЛИС, а также их преимущества и недостатки.
В первой главе рассмотрен метод модельно-ориентированного проектирования, проводится аналитический обзор современных сред моделирования и проектирования National Instruments LabVIEW,Matlab/Sim ul ink.
Вторая глава содержит описание методов решения навигационной задачи, описание назначения навигационного модуля в составе навигационной аппаратуры. В главе рассмотрены требования к навигационному модулю, входная/выходная информация, обмен данными с другими устройствами, раскрывается назначение и место модели в цикле проектирования, а также методы навигационных определений, реализуемые в модели.
Экспериментальной части исследования посвящена третья глава диссертации «Автоматизация проведения исследовательских испытаний навигационного модуля». В этой главе рассматривается автоматизированное рабочее место проектирования и проведения испытаний на основе отладочной платы Virtex-4 и измерительного оборудования от фирмы «Руднев-Шиляев». Приводится структура аппаратной части рабочего места, перечень компонентов, используемые в ходе эксперимента отладочные средства и измерительное оборудование. Также в главе рассматривается программное обеспечение (ПО), которое будет использоваться в ходе эксперимента: Simulink, Xilinx ISE, ПО для работы с отладочными платами, ПО для работы с приборами. В последнем пункте главы описывается процесс организации сквозного проектирования навигационной аппаратуры на основе автоматизированного маршрута проектирования электронных устройств.
Проектирование как целенаправленный процесс следует вести согласно определенным правилам и с применением выбранных методов и технологий. Такой маршрут проектирования служит основным регламентом выполнения проектных процедур - от разработки технического задания на электронное устройство до разработки прикладного программного обеспечения и микропроцессорных модулей. Широкие возможности по реализации подобных маршрутов дает использование современных программных средств моделирования и проведения численного эксперимента, например, пакет прикладных программ Matlab, модуль Simulink, система проведения экспериментальных исследований в реальном времени NI Lab VIEW.
Маршрут проектирования, являющийся предметом исследований в работе, будет служить основой для организации среды поддержки процессов проектирования электронных устройств на базе стандартных интегральных вычислительных компонентов. В качестве прикладного микроэлектронного устройства рассматривается навигационный модуль, предназначенный для первичной обработки цифровых сигналов навигационных космических
аппаратов ГЛОНАСС/GPS' и подготовки информации для последующего решения навигационной задачи. Разработка маршрута проектирования будет заключаться в создании комплекса взаимосвязанных функциональных моделей в среде Matlab, имитирующих работу навигационного модуля в различных режимах, отладке и испытании моделей, адаптации моделей для решения задачи автоматизированного синтеза HDL-кода.
Цель работы - разработка маршрута автоматизированного проектирования электронных устройств на основе интеграции системы функционального моделирования и измерительно-вычислительного комплекса.
Для достижения поставленной цели можно сформулировать следующие задачи:
- анализ существующих подходов, методов и средств функционального моделирования радиоэлектронной аппаратуры (РЭА);
- разработка концепции автоматизированного сквозного проектирования РЭА;
- создание комплекса взаимосвязанных программных моделей электронного устройства в среде Matlab;
- проведение испытаний разработанных моделей и их адаптация для решения задачи автоматизированного синтеза HDL-кода;
- проектирование и отладка автоматизированного рабочего места проведения исследовательских испытаний электронной аппаратуры.
В диссертации использованы методы математического и имитационного моделирования, методы объектно-ориентированного анализа и проектирования, методы определения пространственной ориентации, определения углов Эйлера, методы разрешения фазовой неоднозначности.
Научная новизна диссертационной работы состоит в следующем:
1. Разработана модель гибкого проектирования РЭА на основе интеграции системы функционального моделирования и измерительно¬вычислительного комплекса реального времени.
2. Предложена методика проектирования радиоэлектронных устройств, основанная на использовании разработанных средств организации, технологического и методического сопровождения процесса проектирования и проведения испытаний РЭА.
Предложенный маршрут проектирования является основой для организации среды поддержки процессов проектирования электронных устройств на базе стандартных интегральных компонентов и предназначен для поддержки процессов проектирования электронных устройств в части:
- анализа структуры и параметров электронного устройства;
- проведения численных экспериментов (испытаний) моделей электронных устройств;
- интерпретации результатов численных экспериментов;
- автоматизации синтеза HDL-кода из моделей Simulink для последующей прошивки программируемых логических интегральных схем.
Магистерская диссертация состоит из введения, трех разделов, заключения и списка использованной литературы.
Первая глава содержит анализ методов проектирования электронных устройств. Рассмотрены существующие маршруты проектирования СБИС, ПЛИС, а также их преимущества и недостатки.
В первой главе рассмотрен метод модельно-ориентированного проектирования, проводится аналитический обзор современных сред моделирования и проектирования National Instruments LabVIEW,Matlab/Sim ul ink.
Вторая глава содержит описание методов решения навигационной задачи, описание назначения навигационного модуля в составе навигационной аппаратуры. В главе рассмотрены требования к навигационному модулю, входная/выходная информация, обмен данными с другими устройствами, раскрывается назначение и место модели в цикле проектирования, а также методы навигационных определений, реализуемые в модели.
Экспериментальной части исследования посвящена третья глава диссертации «Автоматизация проведения исследовательских испытаний навигационного модуля». В этой главе рассматривается автоматизированное рабочее место проектирования и проведения испытаний на основе отладочной платы Virtex-4 и измерительного оборудования от фирмы «Руднев-Шиляев». Приводится структура аппаратной части рабочего места, перечень компонентов, используемые в ходе эксперимента отладочные средства и измерительное оборудование. Также в главе рассматривается программное обеспечение (ПО), которое будет использоваться в ходе эксперимента: Simulink, Xilinx ISE, ПО для работы с отладочными платами, ПО для работы с приборами. В последнем пункте главы описывается процесс организации сквозного проектирования навигационной аппаратуры на основе автоматизированного маршрута проектирования электронных устройств.
В выпускной квалификационной работе рассмотрены существующие подходы, методы и средства функционального моделирования радиоэлектронной аппаратуры, разработан комплекс взаимосвязанных
программных моделей электронного устройства в среде Matlab, проведены их испытания и адаптация для решения задачи автоматизированного синтеза HDL- кода. Предложена концепция автоматизированного сквозного проектирования РЭА на основе интеграции средств функционального проектирования и аппаратного обеспечения.
Преимущества предложенного в работе маршрута проектирования устройств на базе программируемых логических интегральных схем заключаются в минимизации влияния человеческого фактора при переходе от математической модели устройства к аппаратной реализации, непрерывности процесса проектирования устройства, получении в процессе проектирования отлаженной математической модели, которая может быть использована не только в процессе проектирования, но и для дальнейшей оптимизации алгоритма работы устройства.
программных моделей электронного устройства в среде Matlab, проведены их испытания и адаптация для решения задачи автоматизированного синтеза HDL- кода. Предложена концепция автоматизированного сквозного проектирования РЭА на основе интеграции средств функционального проектирования и аппаратного обеспечения.
Преимущества предложенного в работе маршрута проектирования устройств на базе программируемых логических интегральных схем заключаются в минимизации влияния человеческого фактора при переходе от математической модели устройства к аппаратной реализации, непрерывности процесса проектирования устройства, получении в процессе проектирования отлаженной математической модели, которая может быть использована не только в процессе проектирования, но и для дальнейшей оптимизации алгоритма работы устройства.
Подобные работы
- Определение эффективности использования
беспилотных авиационных систем энергоснабжающими организациями (на примере ОАО «ИЭСК»)
Бакалаврская работа, информатика. Язык работы: Русский. Цена: 4900 р. Год сдачи: 2018



