Актуальность работы. Движение вязкой несжимаемой жидкости, индуцированное различными силовыми полями, как правило, характеризуется геометрической анизотропией. В этом случае для течений жидкости в тонких слоях горизонтальный масштаб I доминирует над вертикальным характерным размером (толщиной слоя Д).
Крупномасштабные движения в рамках математического аппарата геофизической гидродинамики, океанологии, динамической метеорологии и других направлений механики несжимаемой жидкости могут быть успешно опи-саны, как конвективные слоистые течения вязкой несжимаемой жидкости. В этом случае вектор скорости жидкой среды имеет вид:
V = (ух (х, у, 2, , Уу (х, у, 2, , 0) .
Устоявшейся точкой зрения является утверждение о том, что рассматриваемый класс слоистых течений размерности «два с половиной» может удовлетворительно описывать стратифицированную несжимаемую жидкость. В этом случае пренебрегают изменением вертикальной скорости _ и строят различные математические модели движения воды в Мировом океане. Наиболее популярными уравнениями гидромеханики крупномасштабных течений являются определяющие соотношения, полученные из уравнений Навье-Стокса на основе гипотезы турбулентности Сен-Гили. За такими уравнениями закрепилось специальное название: «наивные уравнения», в которых удерживается вертикальная скорость во всех уравнениях Обербека-Буссинеска, за исключением проекции уравнения сохранения импульсов на вертикальную ось, и не учитываются перекрестные диссипативные эффекты, вызванные неоднородностью распределения температуры и концентрации соли. Иными словами, для описания крупномасштабных процессов принимается приближение гидростатики по толщине слоя. Альтернативный подход был разработан в Пермской гидродинамической школе (С. Н. Аристов, В. Д. Зимин, 1986; С. Н. Аристов, П. Г. Фрик, 1987; С. Н. Аристов, К. Г. Шварц, 2011), который заключался в построении квазидвумерных моделей, описывающих вращающиеся массы жидкости с учетом поперечной координаты, и обобщающих классические уравнения мелкой воды Сен-Венана.