Тип работы:
Предмет:
Язык работы:


АНАЛИЗ И ПРОГНОЗИРОВАНИЕ РЫНКА ЖИЛОЙ НЕДВИЖИМОСТИ В Г.ЕЛАБУГА С ИСПОЛЬЗОВАНИЕМ СТАТИСТИЧЕСКИХ МЕТОДОВ

Работа №86020

Тип работы

Дипломные работы, ВКР

Предмет

информатика

Объем работы147
Год сдачи2017
Стоимость4365 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
162
Не подходит работа?

Узнай цену на написание


Введение 4
1. Теоретические основы эконометрического моделирования 6
1.1. Множественная регрессия 6
1.2. Классическая линейная модель множественной регрессии (КЛММР) 12
1.3. Множественная нелинейная регрессия. Метод Брандона 19
1.4. Множественный корреляционный анализ 20
1.5. Общие сведения о временных рядах и задачах их анализа 24
1.6. Моделирование тенденции временного ряда 29
1.7. ARIMA 39
Выводы по главе 1 46
2. Описание прогнозируемого рынка 46
2.1. Строительная промышленность РТ 46
2.2. Социальные программы региона 54
2.3. Анализ рынка жилой недвижимости в г. Елабуга за 2013-2017 г 57
Выводы по главе 2 65
3. Анализ и прогнозирование цены однокомнатной квартиры и
цены ее квадратного метра на в г. Елабуга в среде SPSS 16. 0.1,
Statistica 6.0 и Delphi 65
3.1. Исходные данные 65
3.2. Построение множественной линейной регрессии 69
3.3. Построение множественной нелинейной регрессии 74
3.5. Анализ результатов МЛР и МНР 80
3.6. Прогнозирование временных рядов 81
3.7. Прогноз стоимости квадратного метра с помощью ARIMA 84
3.8. Анализ с помощью программного приложения 91
Выводы по главе 3 91
Заключение 92
Список использованных источников 93
Приложение A. Программный код 96


Наличие собственного жилья является одной из базовых ценностей человеческого существования, основных его потребностей, обеспечивающей здоровье нации, формирование семьи и сохранение семейных ценностей, стабилизацию и положительное развитие демографической ситуации. Это источник уверенности людей в завтрашнем дне и опора стабильности в обществе. Кроме того, жилье, помимо выполнения базовых функций, является, как объект недвижимости, средством накопления капитала и в то же время инвестиционным механизмом в сфере производства и оборота капитала в обществе.
Прогнозы изменения рыночных цен на квартиры приобретают чрезвычайно высокую популярность и актуальность. Именно поэтому темой моей дипломной работы является анализ и прогнозирование стоимости однокомнатных квартир на вторичном рынке в г. Набережные Челны регрессионным методом и ARIMA-моделями. И действительно, этот вопрос интересует не только застройщиков, ипотечных кредиторов, но и десятки тысяч обычных покупателей и продавцов недвижимости. Но как прогнозировать изменение цен в условиях рыночных отношений между продавцами и покупателями? Ведь правильно определить рыночную цену квартиры на сегодня и прогнозировать ее цену на завтра - это совершенно разные вещи. Кроме того, прогнозы могут носить субъективный характер. Одни участники рынка недвижимости заинтересованы в росте цен, и утверждают, что цены уже достигли дна. Другим для увеличения оборота купли-продажи выгодно снижение цен на недвижимость. И, все же, можно ли экономически обоснованно прогнозировать изменение рыночных цен на недвижимость? Я считаю, что можно. Но для этого надо определить главные факторы, влияющие на изменение рыночных цен на недвижимость, и, осуществляя контроль над их изменением, можно контролировать и изменение рыночных цен. Рассмотрим в качестве примера вторичное жилье.
Если рынок относительно предсказуем и компания располагает данными о предыдущей динамике прогнозируемого показателя или же о динамике факторов, которые на него влияют, то для прогнозирования целесообразно использовать статистические методы. Эти методы основаны на предположении, что в будущем анализируемый показатель будет изменяться по тем же законам, что и в прошлом. Статистические методы различной сложности используют практически все рыночно ориентированные компании, применяя при этом либо Excel, либо специализированные статистические программы (SPSS, Statistica и т. д.).


Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


В данной дипломной работе был проведен анализ цен квадратного метра однокомнатных квартир в городе Елабуга.
Были рассмотрены теоретические основы эконометрического моделирования, а именно парный и множественный регрессионный анализ, общие сведения о временных рядах и ARIMA - моделях.
Посредством корреляционно-регрессионного анализа выявлены факторы, которые в наибольшей степени оказали влияние на изменение цены квартиры. К числу признаков, наиболее сильно влияющих на цену можно отнести общую площадь квартиры и район города. Цена наиболее тесно связана с районом города, в котором располагается квартира.
Для каждой зависимости результирующего признака от факторов были построены линейная и нелинейная множественные модели, проведена спецификация и анализ полученных результатов.
В дипломной работе также была рассмотрена зависимость цены на квартиру от времени по всем районам города при помощи анализа временных рядов. На основании адекватных моделей был сделан прогноз цены при помощи ARIMA - модели.
Для каждого показателя был построен прогноз на 2017-2018 год.
Полученные итоговые результаты показали, что цена не стоит на месте и имеет тенденцию к росту в пределах прогнозируемой инфляции.



1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики.-М:Юнити, 1998г.
2. Аксянова А.В., Гадельшина Г.А., Валеев Н.Н. Анализ временных рядов и прогнозирование. - 2010.http: //rucont.ru/efd/227622
3. Анализ временных рядов. Готовые рефераты. - 2010.
http://bibliofond.ru/view.aspx?id=485833,http://www.bestreferat.ru/files/73/bestreferat- 106773.docx.
4. Балдин К.В., Быстров О.Ф., Соколов М.М. Эконометрика:
Учебное пособие для вузов. - 2-е издание, перераб. и доп. -
М.:ЮНИТИ_ДАНА, 2004. - 254 с.
5. Берндт, Эрист Роберт. Практика эконометрики: классика и современность: Учебник для студентов вузов / Перевод с английского под редакцией профессора С.А. Айвазяна / Э.Р. Берндт. - М.: ЮНИТИ-ДАНА, 2005. - 863 с. (Серия «Зарубежный учебник»)
6. Бессалов А.В. Эконометрика: Учебное пособие для студентов экономических специальностей вузов. - К.: Кондор, 2007. - 196 с.
7. Боровиков В.П. Популярное введение в программу Statistica- М.:КомпьютерПресс, 1998г. - 267 с.
8. Боровиков В.П., Ивченко Г.И. Прогнозирование в системе Statistica в среде Windows. Основы теории и интенсивная практика на компьютере: Учебное пособие-М.:Финансы и статистика, 1999г. - 384 с.:ил.
9. Бородич С.А. Эконометрика: Учебное пособие / С.А. Бородич - 2¬е издание, испр. - Мн.: Новое знание, 2004г. - 416 с. - (Экономическое образование).
10. Г одовые отчеты ОАО «КАМАЗ» за 2008-2010 гг.
11. Гранберг А.Г. Статистическое моделирование и прогнозирование: Учеб. Пособие - С. 103 с.
12. Давние В.В., Тинякова В.И. Компьютерный практикум по эконометрическому моделированию. - Воронеж: Изд-во ВГУ, 2003. - 63 е.
13. Дайитбегов Д.М. Компьютерные технологии анализа данных в эконометрике - М.: Вузовский учебник Инфра-М 2008. - 578с.
14. Евлюхина Е. В., Шибанова Е.В. - Набережные Челны: Изд- КамПИ,2004, 35 с.
15. Ежеманская С.Н. Эконометрика / Серия «Учебники, учебные пособия». - Ростов-на-Дону: Феникс, 2003. - 160 с.
16. Елисеева И.И. Эконометрика: Учебник/ Под редакцией И.И. Елисеевой. - М.: Финансы и статистика, 2003г. - 344с.:ил.
17. Кремер Н.Ш., Путко Б.А. Эконометрика: Учебник для вузов / Под ред. проф. Н.Ш. Кремера. - М.:ЮНИТИ_ДАНА, 2012. - 311 с. http: //rucont.ru/efd/189941
18. Кремер Н.Ш. Теория вероятностей и математическая статистика. - 2012.
19. Корреляционное отношение и индекс корреляции. Готовые
рефераты (часть 2). - 2015.
http://studopedia.ru/9_148253_korrelyatsionnoeotnoshenie-i- indekskorrelyatsii.html.
20. Кулинич Е.И. Эконометрия. - М.: Финансы и статистика, 2001. - 304 с.
21. Леванова Л.Н. Учебно-методическое пособие по курсу «Основы эконометрики». - Саратов, 2003г.
22. Луговская Л.В. Эконометрика в вопросах и ответах: Учебное пособие. - М.: ТК Велби, Изд-во Проспект, 2005. - 208 с.
23. Мардас А.Н. Эконометрика. - СПб: Питер, 2001. - 144 с.
24. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. - М.: Дело, 1997. - 248 с.
25. Методы экономического программирования. Готовые рефераты (часть 2). - 2009. http://bibliofond.ru/view.aspx?id=47065.
26. Моделирование сезонных и циклических колебаний. Готовые
рефераты (часть 2). - 2015. http://studopedia.ru/17_37426_modelirovanie-
sezonnih-itsiklicheskih-kolebaniy.html.
27. Носко В.П. Эконометрика: Введение в регрессионный анализ временных рядов. - Москва, 2002. - 254 с.
28. Основы эконометрики. Готовые рефераты (часть 2). 2014 г.
http://bibliofond.ru/view.aspx?id=720960
29. Орлов А.И. Эконометрика: Учебное пособие для вузов / А.И. Орлов - М.: Издательство «Экзамен», 2002. - 576 с.
30. Павликов С.В. Лекции по курсу «Эконометрика» 2006 г.
31. Перцев Н.В. Лекции по эконометрике. Часть II. Вычислительные аспекты. - Омск: ОмГУ, 2003. - 31 с.
32. Семенова Е. Г., Смирнова М. С. Основы эконометрического анализа: учеб. Пособие - ГУАП. - СПб., 2006. - 72 с.
33. Симптомы мультиколлинеарности.
http://studopedia.ru/9_161168_spisok-voprosov-kekzamenu- podistsiplineekonometrika.html
34. Суслов В.И., Ибрагимов Н.М., Талышева Л.П., Цыплаков А.А. Эконометрия: Учебное пособие. - Новосибирск: Издательство СО РАН, 2005. - 744 с.
35. Тихомиров Н.П., Дорохина Е.Ю. Эконометрика: Учебник / Н.П. Тихомиров, Е.Ю. Дорохина - М.: Издательство «Экзамен», 2003г. - 521 с.
36. Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере - 3-е изд., перераб. и доп. - М.: ИНФРА-М, 2003. - 544 с.
37. Лернер Э.Ю., Кашина О.А. Экономическое моделирование и прогнозирование на компьютере: Учебное пособие. - Казань: Издательство Казанского университета, 2002. - 144 с.
38. Четыркин Е.М. Статистические методы прогнозирования. - М.: Статистика, 1977.
39. Шанченко Н.И. Эконометрика: лабараторный практикум/ Н.И. Шанченко - Ульяновск: УлГТУ, 2004. - 79 с.
40. Щипин К.С. Система прогнозирования на основе
многокритериального анализа временных рядов. Диссертации РГБ. - 2010. http://dlib.rsl.ru/01002635391.


Работу высылаем на протяжении 30 минут после оплаты.



Подобные работы


©2024 Cервис помощи студентам в выполнении работ