Термическая обработка режущего инструмента из углеродистых и легированных марок сталей
|
Введение 9
Глава 1. Информационно-аналитический обзор в области применения сталей и твёрдых сплавов для режущего инструмента 13
1.1 Назначение и область применения углеродистых сталей для
инструмента 14
1.2. Назначение и область применения легированных сталей для
инструмента 21
1.3. Назначение и область применения твердых сплавов для инструмента 32
1.3.1. Свойства и назначение порошковых твердых сплавов для режущего
инструмента 39
Вывод по Главе 1 41
Глава 2. Термическая обработка режущего инструмента из различных марок сталей 43
2.1. Классификация видов термической обработки 47
2.2.1. Собственно термическая обработка стали 50
2.2.2. Термомеханическая обработка сталей 70
2.2.3. Химико-термическая обработка 72
Вывод по Главе 2 84
Глава 3. Сталь для изготовления режущего инструмента - метчиков и плашек 85
3.1. Основные сведения о метчиках и плашках. Требования к ним 85
3.2. Сталь ХВГ. Характеристика, структура, свойства 87
3.3. Выбор термообработки для метчиков и плашек изготовленных из
стали ХВГ 90
Выводы по Главе 3 91
Глава 4. Способы повышения износостойкости режущего инструмента92
Вывод по Главе 4 96
Глава 5. Способы мониторинга состояния режущего инструмента .... 100
5.1. Технико-экономические показатели проектирования режущего
инструмента 110
Вывод по Главе 5 113
Заключение 115
Список литературы 117
Глава 1. Информационно-аналитический обзор в области применения сталей и твёрдых сплавов для режущего инструмента 13
1.1 Назначение и область применения углеродистых сталей для
инструмента 14
1.2. Назначение и область применения легированных сталей для
инструмента 21
1.3. Назначение и область применения твердых сплавов для инструмента 32
1.3.1. Свойства и назначение порошковых твердых сплавов для режущего
инструмента 39
Вывод по Главе 1 41
Глава 2. Термическая обработка режущего инструмента из различных марок сталей 43
2.1. Классификация видов термической обработки 47
2.2.1. Собственно термическая обработка стали 50
2.2.2. Термомеханическая обработка сталей 70
2.2.3. Химико-термическая обработка 72
Вывод по Главе 2 84
Глава 3. Сталь для изготовления режущего инструмента - метчиков и плашек 85
3.1. Основные сведения о метчиках и плашках. Требования к ним 85
3.2. Сталь ХВГ. Характеристика, структура, свойства 87
3.3. Выбор термообработки для метчиков и плашек изготовленных из
стали ХВГ 90
Выводы по Главе 3 91
Глава 4. Способы повышения износостойкости режущего инструмента92
Вывод по Главе 4 96
Глава 5. Способы мониторинга состояния режущего инструмента .... 100
5.1. Технико-экономические показатели проектирования режущего
инструмента 110
Вывод по Главе 5 113
Заключение 115
Список литературы 117
Рост промышленности в целом, особенно машиностроения, тесно связан с развитием инструментального производства. Инструментальное производство оказывает существенное влияние на развитие основного производства, на его технический прогресс, культуру.
За последние годы в инструментальной промышленности проведены большие работы по улучшению конструкции инструментов, унификации и разработке типажа. Широко внедрены в промышленность инструменты, оснащенные многогранными неперетачиваемыми пластинами. Освоено производство быстрорежущих сталей повышенной износостойкости, внедрены шлифовальные круги из синтетических алмазов и других высокостойких абразивов. Проводится большая работа по перестройке инструментального производства в направлении концентрации изготовления основной части инструмента на специализированных предприятиях.
Однако специализированные предприятия далеко не полностью (около 60%) обеспечивают промышленность даже стандартным режущим инструментом. Поэтому почти все машиностроительные заводы вынуждены обеспечивать себя инструментами.
Основными факторами, влияющими на качество режущего инструмента являются: правильный выбор материала, геометрических параметров, способы изготовления режущих инструментов, термическая обработка и качество заточки и доводки. [24]
Термическая обработка металлов и сплавов представляет собой наиболее распространенный вид обработки, применяемый как к заготовкам в процессе изготовления деталей для улучшения их технологических свойств, так и к готовым деталям в качестве окончательной операции, придающей материалу требуемую структуру и свойства.
Отмечено, что на стойкость и производительность металлорежущего инструмента значительное влияние оказывают различные физико-химические процессы, протекающие между контактными поверхностями и внешней средой в процессе резания. Этим исследованиям посвящены ряд работ под руководством Латышева В.Н., Беккер М.С., Станчука Э. А., Гордона М.Б., Клушина М.Е., Подгоркова В.В. и др. Установлено, что недостаточно изучена роль этих процессов в изнашивании и разрушении режущего инструмента. Изучение этих аспектов процесса резания позволит изыскать пути управления процессом резания и повышения эффективности последнего.
Актуальность.Задача повышения стойкости режущего инструмента является актуальной. В процессе эксплуатации режущего
инструмента наиболее интенсивным внешним воздействиям подвергаются их поверхностные слои, поэтому нередко структура и свойства именно поверхностных слоев оказывают определяющее влияние на работоспособность изделий в целом. [25]
Существуют множество способов упрочнения поверхности: лазерное упрочнение, наплавка, накатка, применение различных технологий нанесения покрытий. Однако,применение данных технологий требует использование сложного, часто уникального, дорогостоящего и энергоёмкого оборудования, дорогостоящих упрочняющих сплавов,
высококвалифицированного персонала.
Поэтому, особый интерес представляет разработка новых высокоэффективных методов режущего инструмента за счет диффузионного насыщения поверхности металлов и сплавов различными химическими элементами, метод химико-термической обработки (ХТО).
За последние годы в инструментальной промышленности проведены большие работы по улучшению конструкции инструментов, унификации и разработке типажа. Широко внедрены в промышленность инструменты, оснащенные многогранными неперетачиваемыми пластинами. Освоено производство быстрорежущих сталей повышенной износостойкости, внедрены шлифовальные круги из синтетических алмазов и других высокостойких абразивов. Проводится большая работа по перестройке инструментального производства в направлении концентрации изготовления основной части инструмента на специализированных предприятиях.
Однако специализированные предприятия далеко не полностью (около 60%) обеспечивают промышленность даже стандартным режущим инструментом. Поэтому почти все машиностроительные заводы вынуждены обеспечивать себя инструментами.
Основными факторами, влияющими на качество режущего инструмента являются: правильный выбор материала, геометрических параметров, способы изготовления режущих инструментов, термическая обработка и качество заточки и доводки. [24]
Термическая обработка металлов и сплавов представляет собой наиболее распространенный вид обработки, применяемый как к заготовкам в процессе изготовления деталей для улучшения их технологических свойств, так и к готовым деталям в качестве окончательной операции, придающей материалу требуемую структуру и свойства.
Отмечено, что на стойкость и производительность металлорежущего инструмента значительное влияние оказывают различные физико-химические процессы, протекающие между контактными поверхностями и внешней средой в процессе резания. Этим исследованиям посвящены ряд работ под руководством Латышева В.Н., Беккер М.С., Станчука Э. А., Гордона М.Б., Клушина М.Е., Подгоркова В.В. и др. Установлено, что недостаточно изучена роль этих процессов в изнашивании и разрушении режущего инструмента. Изучение этих аспектов процесса резания позволит изыскать пути управления процессом резания и повышения эффективности последнего.
Актуальность.Задача повышения стойкости режущего инструмента является актуальной. В процессе эксплуатации режущего
инструмента наиболее интенсивным внешним воздействиям подвергаются их поверхностные слои, поэтому нередко структура и свойства именно поверхностных слоев оказывают определяющее влияние на работоспособность изделий в целом. [25]
Существуют множество способов упрочнения поверхности: лазерное упрочнение, наплавка, накатка, применение различных технологий нанесения покрытий. Однако,применение данных технологий требует использование сложного, часто уникального, дорогостоящего и энергоёмкого оборудования, дорогостоящих упрочняющих сплавов,
высококвалифицированного персонала.
Поэтому, особый интерес представляет разработка новых высокоэффективных методов режущего инструмента за счет диффузионного насыщения поверхности металлов и сплавов различными химическими элементами, метод химико-термической обработки (ХТО).
В ВКР был проведен информационно-аналитический обзор в области применения сталей и твёрдых сплавов для режущего инструмента. Основные требования к инструментальным материалам следующие:
1. Инструментальный материал должен иметь высокую твердость.
2. При резании металлов выделяется значительное количество теплоты и режущая часть инструмента нагревается. Поэтому, инструментальный материал должен обладать высокой теплостойкостью.
3. Важным требованием является достаточно высокая прочность инструментального материала.
4. Инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т.е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом, которая проявляется в сопротивлении материала контактной усталости.
5. Необходимым условием достижения высоких режущих свойств
инструмента является низкая физико-химическая активность
инструментального материала по отношению к обрабатываемому.
6. Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов
Термическая обработка, вызывая разнообразные по природе структурные изменения, позволяет управлять строением металлов и сплавов и получать изделия с требуемым комплексом механических, физических и химических свойств. Благодаря этому, а также простоте и дешевизне оборудования термическая обработка является самым распространённым в промышленности способом изменения свойств металлических материалов.
После проделанной практической работы для метчиков и плашек получили сталь высокой и равномерной твердости, с повышенной износостойкостью, а также с высокой прочностью. Полученная сталь отвечает основным требованиям, предъявляемым к стали для режущего
инструмента. Значит, метчики и плашки можно делать из стали ХВГ.
Данную сталь можно заменить другой, с похожими свойствами и структурой. Например, сталями марок ХВСГ, У11А, Х, 9ХС, У10.
Были рассмотрены способы повышения износостойкости режущего инструмента.Методы, позволяющие повысить стойкость режущей части инструмента: насыщение поверхностного слоя инструмента; повышение стойкости путем улучшения структуры при термической обработке; повышение качества поверхности инструмента.
1. Инструментальный материал должен иметь высокую твердость.
2. При резании металлов выделяется значительное количество теплоты и режущая часть инструмента нагревается. Поэтому, инструментальный материал должен обладать высокой теплостойкостью.
3. Важным требованием является достаточно высокая прочность инструментального материала.
4. Инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т.е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом, которая проявляется в сопротивлении материала контактной усталости.
5. Необходимым условием достижения высоких режущих свойств
инструмента является низкая физико-химическая активность
инструментального материала по отношению к обрабатываемому.
6. Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов
Термическая обработка, вызывая разнообразные по природе структурные изменения, позволяет управлять строением металлов и сплавов и получать изделия с требуемым комплексом механических, физических и химических свойств. Благодаря этому, а также простоте и дешевизне оборудования термическая обработка является самым распространённым в промышленности способом изменения свойств металлических материалов.
После проделанной практической работы для метчиков и плашек получили сталь высокой и равномерной твердости, с повышенной износостойкостью, а также с высокой прочностью. Полученная сталь отвечает основным требованиям, предъявляемым к стали для режущего
инструмента. Значит, метчики и плашки можно делать из стали ХВГ.
Данную сталь можно заменить другой, с похожими свойствами и структурой. Например, сталями марок ХВСГ, У11А, Х, 9ХС, У10.
Были рассмотрены способы повышения износостойкости режущего инструмента.Методы, позволяющие повысить стойкость режущей части инструмента: насыщение поверхностного слоя инструмента; повышение стойкости путем улучшения структуры при термической обработке; повышение качества поверхности инструмента.



