Предоставляется в ознакомительных и исследовательских целях
Асимптотический анализ оценок по методу моментов для параметров р и m биномиального распределения
Закажите новую по вашим требованиям
Представленный материал является образцом учебного исследования, примером структуры и содержания учебного исследования по заявленной теме. Размещён исключительно в информационных и ознакомительных целях.
Workspay.ru оказывает информационные услуги по сбору, обработке и структурированию материалов в соответствии с требованиями заказчика.
Размещение материала не означает публикацию произведения впервые и не предполагает передачу исключительных авторских прав третьим лицам.
Материал не предназначен для дословной сдачи в образовательные организации и требует самостоятельной переработки с соблюдением законодательства Российской Федерации об авторском праве и принципов академической добросовестности.
Авторские права на исходные материалы принадлежат их законным правообладателям. В случае возникновения вопросов, связанных с размещённым материалом, просим направить обращение через форму обратной связи.
📋 Содержание (образец)
Введение
§1. Оценки параметров по методу моментов и их
асимптотическая нормальность.
§2. Исследование точностных свойств оценок методом
статистического моделирования.
§3. Приложение к оценке параметров
нервно-мышечного синапса
Заключение и выводы
Список литературы
Приложение
📖 Введение (образец)
Одна из первых работ теоретического плана, посвященных статистическим проблемам биномиального распределения, принадлежит, по-видимому, Haldane [3], где предлагаются оценки по методу моментов параметров т и р биномиального распределения и обсуждается алгоритм численного нахождения оценок т и р по методу максимального правдоподобия. Более подробное исследование оценок по методу максимального правдоподобия содержится в последующей работе Binet [4]. Обзор и анализ точностных свойств обоих методов оценки с численными иллюстрациями точностных характеристик оценок дается в работах Blumenthal и Dahiya [5], а также Olkin, Petkau и Zidek [6]. Отметим также одну из пионерских работ Hoel [7], где предлагается тестовая статистика для проверки простой гипотезы т = т0 против сложной альтернативы т > т0 при неизвестном значении параметра р. Затем эта статистика используется при построении доверительного интервала для т и предлагается точечная оценка т типа оценки по методу моментов. Анализ асимптотических свойств и распределений всевозможных оценок параметров биномиального распределения, включая их робастные свойства, дается в статье Hall [8]. В статьях Draper и Guttman [9], Raftery [10], Carroll и Lombard [11] строятся байесовские оценки биномиальных параметров; их хорошие точностные и робастные свойства отмечают Carroll и Lombard [11]. Обзор современного состояния проблемы оценки параметров биномиального распределения дается в статье DasGupta и Rubin [1], где предлагаются в том числе новые оценки и исследуются их асимптотические свойства.
К общим методам построения оценок параметров распределения относятся: метод максимального правдоподобия, метод моментов, метод наименьших квадратов, байесовский метод. В настоящей работе рассматривается только метод моментов для оценок параметров т и р биномиального распределения. В отличие от предшествующих работ, содержание которых дано в представленном выше обзоре, дельта-метод используется для доказательства асимптотической нормальности совместного распределения оценок т и р по методу моментов. Поскольку для этих оценок моменты любого порядка не существуют, то параметры асимптотической нормальности не допускают прямой интерпретации как характеристики точностных свойств оценок - смещение и дисперсия. Предлагается модификация оценок, основанная на прибавлении к знаменателям статистик, определяющих оценки, постоянных членов порядка о(1/п), что, очевидно, не влияет на параметры установленной асимптотической нормальности. Для модифицированных таким образом оценок параметры асимптотической нормальности становятся характеристиками среднего, дисперсии и ковариации оценок т и р. На основе данных статистического моделирования исследуются возможности использования асимптотического распределения и его параметров для выявления точностных свойств как непосредственных оценок т и р, так и их стандартных модификаций, устраняющих отрицательные значения оценки для параметра р и значения оценки т, меньшие наибольшего значения в выборке. Приводится пример с реальными данными исследования нервного синапса, когда оценивается число везикул с ацетилхолином в нервном окончании и вероятность освобождения ацетилхолина каждой везикулой.



