ЗАДАЧИ НА ОТЫСКАНИЕ НАИБОЛЬШЕГО И НАИМЕНЬШЕГО ЗНАЧЕНИЙ ФУНКЦИИ В ШКОЛЬНОМ КУРСЕ МАТЕМАТИКИ
|
ВВЕДЕНИЕ 3
1 ОБУЧЕНИЕ ШКОЛЬНИКОВ РЕШЕНИЮ МАТЕМАТИЧЕСКИХ 6
ЗАДАЧ 6
1.1 Общие вопросы обучения решению математических задач 6
1.2 Элементарные функции в школьном курсе математики 9
1.3 Основные методы нахождение наибольшего и наименьшего значений
функции 18
2 МЕТОДИКА ИЗУЧЕНИЯ ТЕМЫ «НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ
ЗНАЧЕНИЯ ФУНКЦИИ» В ШКОЛЬНОМ КУРСЕ МАТЕМАТИКИ 27
2.1 АналиЗш содержания школьных учебников на наличие задач о нахождении
наибольшего и наименьшего значений функции 27
2.2 Методика изучения темы «Задачи на отыскание наибольшего и 39
наименьшего значений функции» в курсе алгебры и начал анализа 39
3 РАЗРАБОТКА ФАКУЛЬТАТИВА ДЛЯ 11 КЛАССА НА ТЕМУ «ЗАДАЧИ
НА ОТЫСКАНИЕ НАИБОЛЬШЕГО И НАИМЕНЬШЕГО ЗНАЧЕНИЙ ФУНКЦИИ» 42
3.1 Цели, и задачи факультатива 42
3.1 Методическая разработка занятий факультатива 46
3.3 Апробация методических материалов по теме «Задачи на отыскание набольшего и наименьшего значений функции в школьном курсе математики»
54
ЗАКЛЮЧЕНИЕ 59
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 60
ПРИЛОЖЕНИЯ
1 ОБУЧЕНИЕ ШКОЛЬНИКОВ РЕШЕНИЮ МАТЕМАТИЧЕСКИХ 6
ЗАДАЧ 6
1.1 Общие вопросы обучения решению математических задач 6
1.2 Элементарные функции в школьном курсе математики 9
1.3 Основные методы нахождение наибольшего и наименьшего значений
функции 18
2 МЕТОДИКА ИЗУЧЕНИЯ ТЕМЫ «НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ
ЗНАЧЕНИЯ ФУНКЦИИ» В ШКОЛЬНОМ КУРСЕ МАТЕМАТИКИ 27
2.1 АналиЗш содержания школьных учебников на наличие задач о нахождении
наибольшего и наименьшего значений функции 27
2.2 Методика изучения темы «Задачи на отыскание наибольшего и 39
наименьшего значений функции» в курсе алгебры и начал анализа 39
3 РАЗРАБОТКА ФАКУЛЬТАТИВА ДЛЯ 11 КЛАССА НА ТЕМУ «ЗАДАЧИ
НА ОТЫСКАНИЕ НАИБОЛЬШЕГО И НАИМЕНЬШЕГО ЗНАЧЕНИЙ ФУНКЦИИ» 42
3.1 Цели, и задачи факультатива 42
3.1 Методическая разработка занятий факультатива 46
3.3 Апробация методических материалов по теме «Задачи на отыскание набольшего и наименьшего значений функции в школьном курсе математики»
54
ЗАКЛЮЧЕНИЕ 59
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 60
ПРИЛОЖЕНИЯ
Задачи в обучении математике занимают одно из важных мест: это и цель, и средство обучения. Умение решать задачи - показатель обученности и развития учащихся.
Безусловно, на сегодняшний день одним из основных результатов обучения математике в школе является способность решать задачи. Исследование ученых методистов, педагогов, психологов таких, как Г. В. Дорофеев, М. Л. Галицкий, А. Г. Мордкович, Д. Пойя, Г.И. Саранцев, Л. М. Фридман и др., были посвящены вопросам обучению решения задач.
В трудах авторы рассматривают различные аспекты методики обучения учащихся решению математических задач: классификация математических задач; функции задач в обучении; психолого-педагогические основы обучения решению математических задач и т. д.
Функция - одно из фундаментальных понятий математики, а функциональная идея является одной из определяющих идей развития школьного курса математики. Это связано с тем, что функциональная линия проходит через школьный курс алгебры, алгебры и начала анализа.
При изучении и анализе школьных учебников и учебных пособий по алгебре, материалов ОГЭ и ЕГЭ, можно сделать вывод о том, что большинство заданий посвящено теме «Функция». В заданиях ЕГЭ каждый год встречаются задачи на нахождения наибольшего и наименьшего значений функции на заданном промежутке. И между тем у школьников есть трудности при решении данного вида задач. Одной из причин этого является недостаточное количество часов, отводимых на изучение этой темы. Учителя отмечают, что в методической литературе уделяется недостаточное внимание методике обучения решению задач по данной теме. В повседневной жизни располагая определенными ресурсами, нам приходится часто искать оптимальное решение задачи. Конечно, не все задачи поддаются точному математическому описанию, однако существуют некоторые методы в математике, с помощью которых эти задачи можно свести к нахождению наибольшего и наименьшего значений функции.
Цель дипломной работы: Разработка факультативных занятий по теме «Задачи на отыскание наибольшего и наименьшего значений функции» в курсе алгебры и начала анализа в 11 классах.
Объект исследования: процесс обучения школьников алгебре и началам анализа в 11 классах.
Предмет исследования: задачи на отыскание наибольшего и
наименьшего значений функции в школьном курсе математики.
Гипотеза: проведение факультативных занятий по теме «Задачи на отыскание наибольшего и наименьшего значений функции» способствует систематизации, обобщению знаний школьников и повышению их качества.
Для достижения цели были поставлены задачи:
1. Изучить теоретические аспекты обучения решению математических задач;
2. Рассмотреть элементарные функции и методы нахождения
наибольшего и наименьшего значений функции;
3. Проанализировать содержания школьных учебников на наличие задач о нахождении наибольшего и наименьшего значений функции;
4. Разработать факультатив для 11 класса на тему «Задачи на отыскание наибольшего и наименьшего значений функции»;
Для достижения поставленных задач использовались следующие методы исследования: наблюдение, анализ литературы, беседа с учителями, педагогический эксперимент.
Работа состоит из введения, трех глав, заключения, списка литературы, приложения.
В первой главе описываются общие вопросы обучения школьников решению математических задач. В этой же главе изложены теоретические вопросы, связанные с нахождением наибольшего и наименьшего значений функции в школьном курсе математики. На основе анализа учебной литературы выделены методы нахождения наибольшего и наименьшего значений функции.
Во второй главе выполнен анализ содержания темы «Задачи на отыскание наибольшего и наименьшего значений функции» в школьных учебниках. Также во второй главе даны методические рекомендации по решению задач на нахождение наибольшего и наименьшего значений функции.
В третьей главе описаны цели и задачи факультатива «Задачи на отыскание наибольшего и наименьшего значений функции», приведена разработка некоторых занятий, описана апробация факультативных занятий.
Работа завершается заключением, списком литературы и приложением в котором приведены разработанные конспекты факультативных занятий.
Безусловно, на сегодняшний день одним из основных результатов обучения математике в школе является способность решать задачи. Исследование ученых методистов, педагогов, психологов таких, как Г. В. Дорофеев, М. Л. Галицкий, А. Г. Мордкович, Д. Пойя, Г.И. Саранцев, Л. М. Фридман и др., были посвящены вопросам обучению решения задач.
В трудах авторы рассматривают различные аспекты методики обучения учащихся решению математических задач: классификация математических задач; функции задач в обучении; психолого-педагогические основы обучения решению математических задач и т. д.
Функция - одно из фундаментальных понятий математики, а функциональная идея является одной из определяющих идей развития школьного курса математики. Это связано с тем, что функциональная линия проходит через школьный курс алгебры, алгебры и начала анализа.
При изучении и анализе школьных учебников и учебных пособий по алгебре, материалов ОГЭ и ЕГЭ, можно сделать вывод о том, что большинство заданий посвящено теме «Функция». В заданиях ЕГЭ каждый год встречаются задачи на нахождения наибольшего и наименьшего значений функции на заданном промежутке. И между тем у школьников есть трудности при решении данного вида задач. Одной из причин этого является недостаточное количество часов, отводимых на изучение этой темы. Учителя отмечают, что в методической литературе уделяется недостаточное внимание методике обучения решению задач по данной теме. В повседневной жизни располагая определенными ресурсами, нам приходится часто искать оптимальное решение задачи. Конечно, не все задачи поддаются точному математическому описанию, однако существуют некоторые методы в математике, с помощью которых эти задачи можно свести к нахождению наибольшего и наименьшего значений функции.
Цель дипломной работы: Разработка факультативных занятий по теме «Задачи на отыскание наибольшего и наименьшего значений функции» в курсе алгебры и начала анализа в 11 классах.
Объект исследования: процесс обучения школьников алгебре и началам анализа в 11 классах.
Предмет исследования: задачи на отыскание наибольшего и
наименьшего значений функции в школьном курсе математики.
Гипотеза: проведение факультативных занятий по теме «Задачи на отыскание наибольшего и наименьшего значений функции» способствует систематизации, обобщению знаний школьников и повышению их качества.
Для достижения цели были поставлены задачи:
1. Изучить теоретические аспекты обучения решению математических задач;
2. Рассмотреть элементарные функции и методы нахождения
наибольшего и наименьшего значений функции;
3. Проанализировать содержания школьных учебников на наличие задач о нахождении наибольшего и наименьшего значений функции;
4. Разработать факультатив для 11 класса на тему «Задачи на отыскание наибольшего и наименьшего значений функции»;
Для достижения поставленных задач использовались следующие методы исследования: наблюдение, анализ литературы, беседа с учителями, педагогический эксперимент.
Работа состоит из введения, трех глав, заключения, списка литературы, приложения.
В первой главе описываются общие вопросы обучения школьников решению математических задач. В этой же главе изложены теоретические вопросы, связанные с нахождением наибольшего и наименьшего значений функции в школьном курсе математики. На основе анализа учебной литературы выделены методы нахождения наибольшего и наименьшего значений функции.
Во второй главе выполнен анализ содержания темы «Задачи на отыскание наибольшего и наименьшего значений функции» в школьных учебниках. Также во второй главе даны методические рекомендации по решению задач на нахождение наибольшего и наименьшего значений функции.
В третьей главе описаны цели и задачи факультатива «Задачи на отыскание наибольшего и наименьшего значений функции», приведена разработка некоторых занятий, описана апробация факультативных занятий.
Работа завершается заключением, списком литературы и приложением в котором приведены разработанные конспекты факультативных занятий.
Понятие функции является центральным в математическом образовании. От того, насколько полно и всесторонне школьник усвоит это понятие, зависит его дальнейшая адаптация в математической деятельности.
В школьном курсе алгебры и начала! анализа в учебниках для общеобразовательных классов по теме «Нахождение наибольшего и наименьшего значений функции» недостаточно задач для формирования у школьников умения находить наибольшее и наименьшее значения функции. Исключение составляют учебники и задачники по алгебре, по алгебре и началам анализа для классов с углубленным изучением математики (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская и др.) С другой стороны, материал рассматриваемой темы часто используется не только в математике, но и в физике, химии и т.д., усиливая прикладной характер этой темы.
Содержание материала «Нахождение наибольшего и наименьшего значений функции» позволяет проводить систематизацию знаний и умений учащихся по данной теме, основываясь на целях и задачах факультатива. Это является одним из аспектов подготовки школьников к успешной сдаче ЕГЭ по математике.
Использование разработанного факультатива позволяет создать содержательные условия применения учащимися знаний по нахождению наибольшего и наименьшего значений функции на отрезке с помощью производной, выработать у учащихся навыки решения задач на применение производной. Осуществление такой учебной деятельности предполагает отработку навыка учащимися алгоритм! нахождения наибольшего и наименьшего значений функции, способствует развитию аналитического мышления, обобщению знаний школьников и повышению их качества, что подтверждает гипотезу данной работы.
В школьном курсе алгебры и начала! анализа в учебниках для общеобразовательных классов по теме «Нахождение наибольшего и наименьшего значений функции» недостаточно задач для формирования у школьников умения находить наибольшее и наименьшее значения функции. Исключение составляют учебники и задачники по алгебре, по алгебре и началам анализа для классов с углубленным изучением математики (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская и др.) С другой стороны, материал рассматриваемой темы часто используется не только в математике, но и в физике, химии и т.д., усиливая прикладной характер этой темы.
Содержание материала «Нахождение наибольшего и наименьшего значений функции» позволяет проводить систематизацию знаний и умений учащихся по данной теме, основываясь на целях и задачах факультатива. Это является одним из аспектов подготовки школьников к успешной сдаче ЕГЭ по математике.
Использование разработанного факультатива позволяет создать содержательные условия применения учащимися знаний по нахождению наибольшего и наименьшего значений функции на отрезке с помощью производной, выработать у учащихся навыки решения задач на применение производной. Осуществление такой учебной деятельности предполагает отработку навыка учащимися алгоритм! нахождения наибольшего и наименьшего значений функции, способствует развитию аналитического мышления, обобщению знаний школьников и повышению их качества, что подтверждает гипотезу данной работы.
Подобные работы
- Экстремум функции в элементарной математике и алгоритм Ферма
Курсовые работы, математика. Язык работы: Русский. Цена: 350 р. Год сдачи: 2018 - Курс по выбору «Оптимизационные задачи» в системе предпрофильной подготовки учащихся 9 классов
Дипломные работы, ВКР, педагогика. Язык работы: Русский. Цена: 4800 р. Год сдачи: 2015



