Методология исследования динамических свойств сложных упругих и гидроупругих систем
|
ВВЕДЕНИЕ
Глава 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИСПОЛЬЗОВАНИЯ МЕТОДА КОРРЕКТИРУЮЩИХ РЯДОВ В СИНТЕЗЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК СЛОЖНЫХ УПРУГИХ КОНСТРУКЦИЙ.
1.1. Основные соотношения метода корректирующих рядов.
1.2. Построение корректирующих векторов в ортогональном
подпространстве.
1.3. Основные теоремы метода корректирующих рядов.
1.4. Синтез изгибных колебаний однородных стержней.
Глава 2. СИНТЕЗ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК
ДИСКРЕТНЫХ МОДЕЛЕЙ ПОДКОНСТРУКЦИЙ С ИСПОЛЬЗОВАНИЕМ КОРРЕКТИРУЮЩИХ РЯДОВ.
2.1. Модальный синтез дискретных моделей подконструкций
методом жестких границ.
2.1.1. Общая схема построения корректирующих рядов и синтеза подконструкций.
2.1.2. Использование ортогональных подпространств в процессе построения корректирующих векторов.
2.1.3. Методы формирования матриц подконструкций с использованием корректирующих векторов.
2.1.4. Простые корректирующие вектора в методе жестких границ.
2.2. Модальный синтез дискретных моделей подконструкций
методом свободных границ.
2.2.1. Построение корректирующих рядов в методе свободных границ.
2.2.2. Вычисление корректирующих векторов
частотным сдвигом при наличии нулевых собственных частот.
2.2.3. Сопоставление точности методов свободных и жестких границ.
2.3. Гибридный подход к модальному синтезу дискретных
моделей подконструкций.
2.4. Расчет амплитудно-фазовых частотных характеристик
сложных упругих систем с учетом демпфирования.
2.5. О синтезе аналитических и дискретных моделей
подконструкций.
2.6. Расчет динамических характеристик орбитальной
космической станции.
Глава 3. ПОСТАНОВКА КРАЕВЫХ ЗАДАЧ ГИДРОУПРУГОСТИ ДЛЯ КОНСТРУКЦИЙ, ВЗАИМОДЕЙСТВУЮЩИХ С ОГРАНИЧЕННЫМИ ОБЪЕМАМИ ЖИДКОСТИ.
3.1. Уравнения малых колебаний жидкости в лагранжевой
форме и кинематические условия на контактной поверхности.
3.2. Динамические условия на контактной поверхности и
потенциальная энергия гравитационных сил жидкости.
3.3. Уравнения колебаний конструкции, содержащей жидкость.
3.4. Вариационные принципы для решения задач о колебаниях
конструкций, содержащих жидкость.
Глава 4. МЕТОДИКА РАСЧЕТА ДИНАМИЧЕСКИХ
ХАРАКТЕРИСТИК СЛОЖНЫХ ОСЕСИММЕТРИЧНЫХ ОБОЛОЧЕЧНЫХ КОНСТРУКЦИЙ, СОДЕРЖАЩИХ ЖИДКОСТЬ.
4.1. Основные соотношения.
4.1.1. Колебания несжимаемой жидкости.
4.1.2. Тонкостенная упругая оболочка. . . . 182
4.1.3. Упругие шпангоуты. . . . 186
4.1.4. Вариационная формулировка проблемы. . . . 189
4.1.5. Массы эквивалентных осцилляторов. . . . 198
4.2. Конечноэлементная дискретизация конструкции. . . . 200
4.2.1. Конечные элементы несжимаемой жидкости. . . . 201
4.2.2. Конечные элементы тонкостенной оболочки. . . . 204
4.2.3. Конечные элементы свободной поверхности. . . . 209
4.2.4. Формирование объединенных матриц . . . 210 конечноэлементной модели.
4.3. Учет влияния статического деформированного состояния . . . 213
при расчете динамических характеристик.
4.4. Основные принципы построения вычислительных . . . 216
алгоритмов.
4.4.1. Рациональное использование памяти . . . 217 вычислительной системы.
4.4.2. Решение проблемы собственных значений. . . . 219
4.4.3. Ввод исходной информации. . . . 221
4.5. Результаты расчетов. . . . 223
4.5.1. Сопоставление расчетных данных с известными . . . 223 решениями.
4.5.2. Исследование устойчивости гидроупругой системы . . . 234 при действии гравитационного поля.
4.6. Синтез подконструкций в расчетах динамических . . . 239
характеристик корпусов жидкостных ракет тандемной схемы.
Глава 5. ИССЛЕДОВАНИЕ ДИНАМИКИ ПРОДОЛЬНЫХ . . .255
АВТОКОЛЕБАНИЙ ЖИДКОСТНОЙ РАКЕТЫ НА ОСНОВЕ ОБОЛОЧЕЧНОЙ МОДЕЛИ КОРПУСА.
- 5 -
5.1. Уравнения продольных колебаний жидкостной ракеты как
гидроупругой системы с регулятором.
5.2. Уравнения нелинейных колебаний осесимметричных
оболочечных конструкций с жидкостью.
5.3. Параметрическое возбуждение неосесимметричных форм
при осесимметричных колебаниях.
5.4. Вычисление коэффициентов нелинейных уравнений.
Построение областей параметрического возбуждения.
5.5. Уравнения продольных колебаний с учетом нелинейности
поведения корпуса. Метод решения.
5.6. Исследование нелинейных автоколебаний гидроупругой
системы с регулятором.
5.6.1. Параметрическое возбуждение неосесимметричных колебаний.
5.6.2. Нелинейные продольные автоколебания гидроупругой системы с регулятором.
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
Глава 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИСПОЛЬЗОВАНИЯ МЕТОДА КОРРЕКТИРУЮЩИХ РЯДОВ В СИНТЕЗЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК СЛОЖНЫХ УПРУГИХ КОНСТРУКЦИЙ.
1.1. Основные соотношения метода корректирующих рядов.
1.2. Построение корректирующих векторов в ортогональном
подпространстве.
1.3. Основные теоремы метода корректирующих рядов.
1.4. Синтез изгибных колебаний однородных стержней.
Глава 2. СИНТЕЗ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК
ДИСКРЕТНЫХ МОДЕЛЕЙ ПОДКОНСТРУКЦИЙ С ИСПОЛЬЗОВАНИЕМ КОРРЕКТИРУЮЩИХ РЯДОВ.
2.1. Модальный синтез дискретных моделей подконструкций
методом жестких границ.
2.1.1. Общая схема построения корректирующих рядов и синтеза подконструкций.
2.1.2. Использование ортогональных подпространств в процессе построения корректирующих векторов.
2.1.3. Методы формирования матриц подконструкций с использованием корректирующих векторов.
2.1.4. Простые корректирующие вектора в методе жестких границ.
2.2. Модальный синтез дискретных моделей подконструкций
методом свободных границ.
2.2.1. Построение корректирующих рядов в методе свободных границ.
2.2.2. Вычисление корректирующих векторов
частотным сдвигом при наличии нулевых собственных частот.
2.2.3. Сопоставление точности методов свободных и жестких границ.
2.3. Гибридный подход к модальному синтезу дискретных
моделей подконструкций.
2.4. Расчет амплитудно-фазовых частотных характеристик
сложных упругих систем с учетом демпфирования.
2.5. О синтезе аналитических и дискретных моделей
подконструкций.
2.6. Расчет динамических характеристик орбитальной
космической станции.
Глава 3. ПОСТАНОВКА КРАЕВЫХ ЗАДАЧ ГИДРОУПРУГОСТИ ДЛЯ КОНСТРУКЦИЙ, ВЗАИМОДЕЙСТВУЮЩИХ С ОГРАНИЧЕННЫМИ ОБЪЕМАМИ ЖИДКОСТИ.
3.1. Уравнения малых колебаний жидкости в лагранжевой
форме и кинематические условия на контактной поверхности.
3.2. Динамические условия на контактной поверхности и
потенциальная энергия гравитационных сил жидкости.
3.3. Уравнения колебаний конструкции, содержащей жидкость.
3.4. Вариационные принципы для решения задач о колебаниях
конструкций, содержащих жидкость.
Глава 4. МЕТОДИКА РАСЧЕТА ДИНАМИЧЕСКИХ
ХАРАКТЕРИСТИК СЛОЖНЫХ ОСЕСИММЕТРИЧНЫХ ОБОЛОЧЕЧНЫХ КОНСТРУКЦИЙ, СОДЕРЖАЩИХ ЖИДКОСТЬ.
4.1. Основные соотношения.
4.1.1. Колебания несжимаемой жидкости.
4.1.2. Тонкостенная упругая оболочка. . . . 182
4.1.3. Упругие шпангоуты. . . . 186
4.1.4. Вариационная формулировка проблемы. . . . 189
4.1.5. Массы эквивалентных осцилляторов. . . . 198
4.2. Конечноэлементная дискретизация конструкции. . . . 200
4.2.1. Конечные элементы несжимаемой жидкости. . . . 201
4.2.2. Конечные элементы тонкостенной оболочки. . . . 204
4.2.3. Конечные элементы свободной поверхности. . . . 209
4.2.4. Формирование объединенных матриц . . . 210 конечноэлементной модели.
4.3. Учет влияния статического деформированного состояния . . . 213
при расчете динамических характеристик.
4.4. Основные принципы построения вычислительных . . . 216
алгоритмов.
4.4.1. Рациональное использование памяти . . . 217 вычислительной системы.
4.4.2. Решение проблемы собственных значений. . . . 219
4.4.3. Ввод исходной информации. . . . 221
4.5. Результаты расчетов. . . . 223
4.5.1. Сопоставление расчетных данных с известными . . . 223 решениями.
4.5.2. Исследование устойчивости гидроупругой системы . . . 234 при действии гравитационного поля.
4.6. Синтез подконструкций в расчетах динамических . . . 239
характеристик корпусов жидкостных ракет тандемной схемы.
Глава 5. ИССЛЕДОВАНИЕ ДИНАМИКИ ПРОДОЛЬНЫХ . . .255
АВТОКОЛЕБАНИЙ ЖИДКОСТНОЙ РАКЕТЫ НА ОСНОВЕ ОБОЛОЧЕЧНОЙ МОДЕЛИ КОРПУСА.
- 5 -
5.1. Уравнения продольных колебаний жидкостной ракеты как
гидроупругой системы с регулятором.
5.2. Уравнения нелинейных колебаний осесимметричных
оболочечных конструкций с жидкостью.
5.3. Параметрическое возбуждение неосесимметричных форм
при осесимметричных колебаниях.
5.4. Вычисление коэффициентов нелинейных уравнений.
Построение областей параметрического возбуждения.
5.5. Уравнения продольных колебаний с учетом нелинейности
поведения корпуса. Метод решения.
5.6. Исследование нелинейных автоколебаний гидроупругой
системы с регулятором.
5.6.1. Параметрическое возбуждение неосесимметричных колебаний.
5.6.2. Нелинейные продольные автоколебания гидроупругой системы с регулятором.
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
Практически все современные технические сооружения и аппараты - ракеты и космические станции, самолеты, корабли, автомобили, строительные и гидротехнические сооружения - представляют собой сложные системы, состоящие из совместно функционирующих подсистем. Условия взаимодействия этих подсистем, выделяемых либо пространственно, как часть конструкции, либо в плане выполняемой функции, определяют успешность выполнения главной задачи разрабатываемой системы. Как правило, понятие “сложность” связывается именно с наличием в системе многих компонент, взаимное влияние которых создает проблемы при проведении теоретических исследований, необходимых для ее проектирования.
Физическую основу рассматриваемых систем, несущую все прочие подсистемы, представляет конструкция, скомпонованная из стержневых, тонкостенных или иных элементов, изготовленных из материалов, которые в пределах достаточно малых деформаций могут рассматриваться как упругие. Результатом взаимодействия упругой конструкции с прочими подсистемами и с внешней средой являются ее колебания - периодические или же переходный процесс. Параметры этих колебаний определяют пригодность конструкции к эксплуатации по критериям прочности, амплитудным значениям перемещений, уровням перегрузок или иным конкретным для каждой системы показателям.
Важным этапом исследования динамического поведения разрабатываемой системы является определение динамических характеристик входящей в ее состав упругой конструкции, к числу которых относятся собственные частоты и формы колебаний, амплитудно-фазовые частотные характеристики, динамические коэффициенты влияния (динамические жесткости и динамические
- 7 -
податливости) и т.д. Эта информация является исходной для последующего анализа вибраций конструкции.
Обычно упругая конструкция сама представляет собой сложную систему, составленную из относительно более простых подконструкций, механически соединенных между собой и взаимодействующих в процессе совместных колебаний. Это существенно осложняет задачу исследования ее динамических характеристик как экспериментальными, так и расчетными методами. При этом возникающие трудности могут иметь как технический, так и организационный характер:
- размерность математической модели всей конструкции в целом может превышать возможности используемой для расчета вычислительной системы (либо ограничен объем памяти, либо потребное время счета делает задачу невыполнимой);
- конструкция может оказаться слишком велика для проведения вибрационных испытаний (в особенности это относится к летательным и космическим аппаратам, динамические характеристики которых должны определяться при отсутствии какого-либо закрепления);
- многие крупные системы (например, космические станции) обычно формируются из фрагментов, разрабатываемых разными фирмами, находящимися в разных странах на значительном удалении друг от друга, когда сборка всех компонент для проведения испытаний оказывается весьма дорогостоящим и трудновыполнимым мероприятием.
Естественным направлением мысли на пути преодоления указанных проблем является анализ расчлененной на подсистемы конструкции по частям и последующий синтез результатов, полученных для каждой части в отдельности теоретически или экспериментально. Развитие электронной вычислитель¬ной техники с середины 1960-х годов придало актуальность разработке универсальных алгоритмов, позволяющих автоматизировать процедуру синтеза
при исследовании динамических характеристик сложных механических систем.
Считается, что впервые четко оформленный тензорно-матричный подход к этой проблеме изложен в работах Г.Крона [65].
Физическую основу рассматриваемых систем, несущую все прочие подсистемы, представляет конструкция, скомпонованная из стержневых, тонкостенных или иных элементов, изготовленных из материалов, которые в пределах достаточно малых деформаций могут рассматриваться как упругие. Результатом взаимодействия упругой конструкции с прочими подсистемами и с внешней средой являются ее колебания - периодические или же переходный процесс. Параметры этих колебаний определяют пригодность конструкции к эксплуатации по критериям прочности, амплитудным значениям перемещений, уровням перегрузок или иным конкретным для каждой системы показателям.
Важным этапом исследования динамического поведения разрабатываемой системы является определение динамических характеристик входящей в ее состав упругой конструкции, к числу которых относятся собственные частоты и формы колебаний, амплитудно-фазовые частотные характеристики, динамические коэффициенты влияния (динамические жесткости и динамические
- 7 -
податливости) и т.д. Эта информация является исходной для последующего анализа вибраций конструкции.
Обычно упругая конструкция сама представляет собой сложную систему, составленную из относительно более простых подконструкций, механически соединенных между собой и взаимодействующих в процессе совместных колебаний. Это существенно осложняет задачу исследования ее динамических характеристик как экспериментальными, так и расчетными методами. При этом возникающие трудности могут иметь как технический, так и организационный характер:
- размерность математической модели всей конструкции в целом может превышать возможности используемой для расчета вычислительной системы (либо ограничен объем памяти, либо потребное время счета делает задачу невыполнимой);
- конструкция может оказаться слишком велика для проведения вибрационных испытаний (в особенности это относится к летательным и космическим аппаратам, динамические характеристики которых должны определяться при отсутствии какого-либо закрепления);
- многие крупные системы (например, космические станции) обычно формируются из фрагментов, разрабатываемых разными фирмами, находящимися в разных странах на значительном удалении друг от друга, когда сборка всех компонент для проведения испытаний оказывается весьма дорогостоящим и трудновыполнимым мероприятием.
Естественным направлением мысли на пути преодоления указанных проблем является анализ расчлененной на подсистемы конструкции по частям и последующий синтез результатов, полученных для каждой части в отдельности теоретически или экспериментально. Развитие электронной вычислитель¬ной техники с середины 1960-х годов придало актуальность разработке универсальных алгоритмов, позволяющих автоматизировать процедуру синтеза
при исследовании динамических характеристик сложных механических систем.
Считается, что впервые четко оформленный тензорно-матричный подход к этой проблеме изложен в работах Г.Крона [65].
В диссертации представлена методология исследования динамических свойств сложных упругих и гидроупругих систем, основанная на корректном и непротиворечивом подходе к задаче определения динамических характеристик входящих в систему конструкций, содержащих жидкость, и высокоэффективном и надежном методе модального синтеза подконструкций, обеспечивающем оценку точности получаемых результатов.
Основные результаты, полученные в процессе выполненных исследований, можно сформулировать следующим образом.
1. Сформулированы и доказаны основные теоремы метода корректирующих рядов, составляющие принципиально новую идеологическую основу модального синтеза подконструкций при исследовании динамических свойств сложных систем в ограниченном частотном интервале. Операция усечения ряда из собственных форм подконструкции заменяется усечением степенного корректирующего ряда при конечном числе собственных форм в модальном разложении колебаний. Коэффициенты степенного ряда вычисляются рекуррентно с помощью последовательности статических задач.
2. Получена асимптотическая оценка погрешности усечения модального разложения при увеличении порядка корректирующего ряда, дающая априорную оценку точности результатов синтеза подконструкций.
3. Выведены соотношения метода корректирующих рядов как для дискретных моделей подконструкций, так и для континуальных моделей. Рассмотрены различные варианты синтеза в зависимости от условий закрепления внешних степеней свободы подконструкций при определении их собственных частот и форм: методы жестких и свободных границ, а также гибридный метод, когда часть внешних степеней свободы закреплена, а часть свободна. Исследованы различные методы формирования матриц динамических коэффициентов влияния подконструкций.
- 306 -
4. Разработан численно устойчивый алгоритм вычисления корректирующих векторов (или функций). Показано, что в ходе рекуррентного процесса они должны вычисляться в подпространстве, ортогональном к учтенным в разложении собственным формам, при этом на каждом шаге должна выполняться дополнительная ортогонализация решения.
Основные результаты, полученные в процессе выполненных исследований, можно сформулировать следующим образом.
1. Сформулированы и доказаны основные теоремы метода корректирующих рядов, составляющие принципиально новую идеологическую основу модального синтеза подконструкций при исследовании динамических свойств сложных систем в ограниченном частотном интервале. Операция усечения ряда из собственных форм подконструкции заменяется усечением степенного корректирующего ряда при конечном числе собственных форм в модальном разложении колебаний. Коэффициенты степенного ряда вычисляются рекуррентно с помощью последовательности статических задач.
2. Получена асимптотическая оценка погрешности усечения модального разложения при увеличении порядка корректирующего ряда, дающая априорную оценку точности результатов синтеза подконструкций.
3. Выведены соотношения метода корректирующих рядов как для дискретных моделей подконструкций, так и для континуальных моделей. Рассмотрены различные варианты синтеза в зависимости от условий закрепления внешних степеней свободы подконструкций при определении их собственных частот и форм: методы жестких и свободных границ, а также гибридный метод, когда часть внешних степеней свободы закреплена, а часть свободна. Исследованы различные методы формирования матриц динамических коэффициентов влияния подконструкций.
- 306 -
4. Разработан численно устойчивый алгоритм вычисления корректирующих векторов (или функций). Показано, что в ходе рекуррентного процесса они должны вычисляться в подпространстве, ортогональном к учтенным в разложении собственным формам, при этом на каждом шаге должна выполняться дополнительная ортогонализация решения.



