Введение 3
Постановка задачи 5
Обзор литературы 7
Глава 1. Определение поля скоростей в задачах обработки радионуклидных изображений 12
§1.1. Уравнения Эйлера-Лагранжа 12
§1.2. Разреженные системы специального вида 12
§1.3. Блочные методы. Сходимость 16
Глава 2. Практическое применение методов определения поля скоростей для обработки радионуклидных исследований 19
§2.1. Построение поля скоростей для радионуклидных изображений 19
§2.2. Построение поля скоростей для последовательностей радионуклидных изображений
Заключение 25
Список литературы
Радионуклидная диагностика (ядерная медицина) — современный метод лучевой диагностики для оценки функционального состояния различных органов и систем организма с помощью меченных радионуклидами веществ — радиофармпрепаратов.
Наиболее широкое распространение получил метод сцинтиграфии — метод функциональной визуализации, заключающийся во введении в организм радиоактивных изотопов и получении изображений путём детектирования испускаемого ими излучения.
Существует несколько режимов сбора данных радионуклидного исследования в зависимости от его целей: планарное статическое или динамическое сканирование, сцинтиграфия всего тела, томографическое сканирование, «Синхронизация» и «Томография с синхронизацией». Они отличаются положением пациента относительно детектора гамма-камеры, количеством формируемых изображений, способностью наблюдать распределение индикатора в организме в зависимости от времени и получать картины объемного распределения радиофармпрепарата.
Важную роль в процессе радионуклидной диагностики играет аппаратное средство, с помощью которого она производится, выбор подходящего в конкретном случае радиофармпрепарата и, конечно же, обработка данных с использованием полученных изображений.
В данной работе рассматривается построение поля скоростей для обработки данных радионуклидных исследований. Предложенные методы основаны на понятии оптического потока, который представляет собой распределение видимых скоростей движения объектов, получаемое на основе их изображений в разные моменты времени. Здесь под оптическим потоком будем понимать двумерное или трехмерное поле векторов перемещения, описывающее наблюдаемое в изображении смещение точек, происходящее при движении изображаемых объектов относительно детектора гамма-камеры.
В первой главе рассматриваются методы определения поля скоростей для двумерных изображений и их последовательностей в предположении о постоянстве плотности распределения радиофармпрепарата вдоль траекторий движения и о постоянстве ее градиента. Для решения используется метод регуляризации по А.Н. Тихонову и исследуется вариационная задача. Составляется интегральный функционал и рассматривается задача его минимизации. Выписываются уравнения Эйлера-Лагранжа, которые представляют собой дифференциальные уравнения в частных производных второго порядка с заданными граничными условиями. Полученная система сводится заменой частных производных конечными разностями к системе линейных уравнений, выполняются некоторые преобразования, в результате которых получается линейная система специального вида с разреженными матрицами. Далее она решается известными итерационными методами. Матрицы системы преобразуются в блочные, с блоками второго порядка. Полученная система решается блочными итерационными методами Гаусса-Зейделя и последовательной верхней релаксации (SOR), после предварительного доказательства их сходимости к единственному решению системы.
Во второй главе представлены результаты экспериментов, проведенных с использованием радионуклидных исследований, в ходе которых были апробированы разработанные алгоритмы. Предложенные в работе методы используются для определения движения областей интереса на изображениях, а также для их оконтуривания.
В данной работе рассматривалась задача определения поля скоростей в задачах цифровой обработки радионуклидных изображений и их последовательностей. Актуальность проведенного исследования обусловлена активным развитием ядерной медицины. Сегодня практически ни одна диагностика заболеваний различного типа не обходится без проведения ОФЭКТ или ПЭТ. Применение радионуклидных методов исследования помогает обнаруживать болезни на ранних стадиях, локализовывать их очаг или уточнять диагноз. Средства ядерной медицины и ее программное обеспечение постоянно совершенствуются, что приводит к появлению все новых математических задач, в том числе связанных с обработкой полученных изображений.
В ходе данного исследования была изучена литература, связанная с его тематикой, достижения российских и зарубежных ученых в данной области. В основной части работы были предложены два метода определения поля скоростей. Один из них основан на предположении о постоянстве плотности распределения радиофармпрепарата вдоль траектории движения объектов, другой предполагает постоянство градиента плотности. Проблема нахождения поля скоростей сведена к решению больших разреженных систем линейных уравнений. Полученные системы линейных уравнений решены итерационными методами Гаусса-Зейделя и последовательной верхней релаксации, показана их сходимость.
Полученные в процессе исследования методы использовались в качестве алгоритмов, применяемых при цифровой обработке различных изображений, в том числе и радионуклидных, и были реализованы в среде MATLAB. Таким образом, в работе проведен системный анализ информации на основе компьютерных методов обработки данных.
Результаты данного исследования были апробированы с использованием радионуклидных изображений, полученных в результате исследований проводимых на двухдетекторном гамма-томографе «ЭФАТОМ» [23, 26] в «Федеральном научно-клиническом центре специализированных видов медицинской помощи медицинских технологий Федерального медико¬биологического агентства» (ФНКЦ ФМБА России, Москва). На данном томографе обработка данных производится с помощью программного комплекса «Диагностика» [8].
Рассмотренные методы могут быть использованы при обработке данных, полученных в процессе радионуклидной диагностики, а именно для обнаружения движения во время исследования и его коррекции, а также для построения контуров областей интереса [4, 9, 11, 40].