МЕЗОМАСШТАБНАЯ ОРГАНИЗАЦИЯ И ЭВОЛЮЦИЯ СИСТЕМ ОСАДКОВ НА ЮГЕ БРАЗИЛИИ (25.00.30)
|
СПИСОК ТЕРМИНОВ 5
ВВЕДЕНИЕ 7
ГЛАВА 1. МЕЗОМАСШТАБНЫЕ СИСТЕМЫ ОСАДКОВ КАК ОБЪЕКТ ПРОГНОЗА
1.1 Роль дистанционных средств в истории мезомасштабного анализа 19
1.2 Локальные шторма 24
1.3 Мезомасштабные конвективные комплексы (МКК) 27
1.3.1 Генезис и стадии эволюции МКК 29
1.3.2 МКК как объект сверхкраткосрочного прогноза 31
1.4 Мезомасштабные линии шквалов (МЛШ) 33
1.4.1 Эволюция МЛШ и её морфоструктуры 34
1.5 О целях предлагаемой работы 39
ГЛАВА 2. РЕГИОН ИССЛЕДОВАНИЯ, ДАННЫЕ И МЕТОДЫ НАБЛЮДЕНИЯ МЕЗОМАСШТАБНЫХ СИСТЕМ ОСАДКОВ
2.1. Краткая характеристика региона исследования 44
2.2. Радиолокационные данные и методы первичной обработки 50
2.2.1 Краткая характеристика данных 51
2.2.2 Определение зон конвективных осадков и осадков слоистообразной облачности 53
2.2.3 Определение скорости переноса зон осадков 56
2.2.4 Определение элементов структуры линии глубокой конвекции 59
2.2.5 Оценка горизонтальных и вертикальных движений 60
ГЛАВА 3. КЛАССИФИКАЦИЯ МЕЗОМАСШТАБНЫХ СИСТЕМ ОСАДКОВ
3.1 Определение мезомасштабных систем осадков 64
3.1.1 Репрезентативность выборки и сезонный ход параметров МСО 65
3.1.2 Принципы типизации МСО 68
3.2 Классификация МСО 70
3.2.1 Критерий интенсивности МСО 71
3.2.2 Область развития МСО 72
3.2.3 Структура поля отражаемости МСО 74
3
3.3 Сравнительные характеристики МСО 77
3.3.1 Характеристика классов МСО 77
3.4 Практическое использование классификации МСО 84
3.4.1 Универсальность классификации 85
3.4.2 Использование классификации для интерпретации данных 89
3.5. Краткие выводы к главе 3 92
ГЛАВА 4. ЭВОЛЮЦИЯ МЕЗОМАСШТАБНЫХ ЛИНИЙ ШКВАЛОВ 94
4.1 Определение трансляционной и эволюционной компонент в перемещении МЛШ 95
4.2 Нормальные компоненты переноса и развития МЛШ 101
4.2.1 «Быстрые» и «медленные» линии 101
4.3 Вектор развития и формирование ЗОСО 103
4.4 К вопросу о генезисе слоистообразного региона 108
4.5 Эволюционная классификация МЛШ 113
4.5.1 Классификации, основанные на скорости смещения МЛШ 114
4.5.2 Морфологические классификации МЛШ 117
4.6 Структура движений квазидвумерных МЛШ с ЗОСО 123
4.6.1 «Быстрая» МЛШ 123
4.6.2 «Медленная» МЛШ 126
4.7 Краткие выводы к главе 4 127
ГЛАВА 5. ИЗМЕНЕНИЯ МЕТЕОПАРАМЕТРОВ У ПОВЕРХНОСТИ ЗЕМЛИ, СВЯЗАННОЕ С МЕЗОМАСШТАБНЫМИ ЛИНИЯМИ ШКВАЛОВ 129
5.1 Кучево-дождевая облачность и возникновение шквалов в регионе 132
5.1.1 Определение и повторяемость шквалов в регионе 132
5.1.2 Роль конвективных осадков в генерации шквалов 135
5.2 Изменение метеопараметров при прохождении МЛШ 139
5.2.1 Давление, температура и ветер у поверхности земли
при прохождении линий шквалов 139
5.2.2. Сопоставление радиолокационной и наземной информации 141
5.3 Линия шквалов как плотностной поток 145
5.3.1 Зона формирования оттока 146
4
5.3.2 Прогноз скорости ветра у земли 148
5.4 Шквалы локальных штормов 150
5.5 Реконструкция типа МЛШ по особенностям изменения приземного давления 152
5.5.1 Основная идея метода типизации барограмм 153
5.5.2 Классификация типа мезомасштабных систем по барограммам...155
5.6 Выводы к главе 5 160
ГЛАВА 6. АНАЛИЗ И ИНТЕРПРЕТАЦИЯ МЕЗОМАСШТАБНЫХ ЦИРКУЛЯЦИЙ В СИСТЕМАХ ОСАДКОВ 163
6.1 Структура циркуляций мезомасштабных конвективных систем 164
6.2 Теплая несущая полоса во фронтах и циклонах 166
6.3 К вопросу о системе координат 168
6.3.1. Линии тока в «сверхбыстрой» МЛШ 169
6.3.2. Линии тока в «сверхмедленной» МЛШ 175
6.4 Примеры использования MWR в прогнозе 177
6.4.1 Тыловой вток и направление движения МЛШ 177
6.4.2 Шторма с индивидуальным развитием 180
6.4.3 Квазистационарные фронты 182
6.4.4 Особенности формирование полос осадков на фронтах и
в циклонах 190
6.5 Втоки в зону осадков слоистообразной облачности 193
6.6 Выводы к главе 6 196
ЗАКЛЮЧЕНИЕ 199
СПИСОК ЛИТЕРАТУРЫ 207
ВВЕДЕНИЕ 7
ГЛАВА 1. МЕЗОМАСШТАБНЫЕ СИСТЕМЫ ОСАДКОВ КАК ОБЪЕКТ ПРОГНОЗА
1.1 Роль дистанционных средств в истории мезомасштабного анализа 19
1.2 Локальные шторма 24
1.3 Мезомасштабные конвективные комплексы (МКК) 27
1.3.1 Генезис и стадии эволюции МКК 29
1.3.2 МКК как объект сверхкраткосрочного прогноза 31
1.4 Мезомасштабные линии шквалов (МЛШ) 33
1.4.1 Эволюция МЛШ и её морфоструктуры 34
1.5 О целях предлагаемой работы 39
ГЛАВА 2. РЕГИОН ИССЛЕДОВАНИЯ, ДАННЫЕ И МЕТОДЫ НАБЛЮДЕНИЯ МЕЗОМАСШТАБНЫХ СИСТЕМ ОСАДКОВ
2.1. Краткая характеристика региона исследования 44
2.2. Радиолокационные данные и методы первичной обработки 50
2.2.1 Краткая характеристика данных 51
2.2.2 Определение зон конвективных осадков и осадков слоистообразной облачности 53
2.2.3 Определение скорости переноса зон осадков 56
2.2.4 Определение элементов структуры линии глубокой конвекции 59
2.2.5 Оценка горизонтальных и вертикальных движений 60
ГЛАВА 3. КЛАССИФИКАЦИЯ МЕЗОМАСШТАБНЫХ СИСТЕМ ОСАДКОВ
3.1 Определение мезомасштабных систем осадков 64
3.1.1 Репрезентативность выборки и сезонный ход параметров МСО 65
3.1.2 Принципы типизации МСО 68
3.2 Классификация МСО 70
3.2.1 Критерий интенсивности МСО 71
3.2.2 Область развития МСО 72
3.2.3 Структура поля отражаемости МСО 74
3
3.3 Сравнительные характеристики МСО 77
3.3.1 Характеристика классов МСО 77
3.4 Практическое использование классификации МСО 84
3.4.1 Универсальность классификации 85
3.4.2 Использование классификации для интерпретации данных 89
3.5. Краткие выводы к главе 3 92
ГЛАВА 4. ЭВОЛЮЦИЯ МЕЗОМАСШТАБНЫХ ЛИНИЙ ШКВАЛОВ 94
4.1 Определение трансляционной и эволюционной компонент в перемещении МЛШ 95
4.2 Нормальные компоненты переноса и развития МЛШ 101
4.2.1 «Быстрые» и «медленные» линии 101
4.3 Вектор развития и формирование ЗОСО 103
4.4 К вопросу о генезисе слоистообразного региона 108
4.5 Эволюционная классификация МЛШ 113
4.5.1 Классификации, основанные на скорости смещения МЛШ 114
4.5.2 Морфологические классификации МЛШ 117
4.6 Структура движений квазидвумерных МЛШ с ЗОСО 123
4.6.1 «Быстрая» МЛШ 123
4.6.2 «Медленная» МЛШ 126
4.7 Краткие выводы к главе 4 127
ГЛАВА 5. ИЗМЕНЕНИЯ МЕТЕОПАРАМЕТРОВ У ПОВЕРХНОСТИ ЗЕМЛИ, СВЯЗАННОЕ С МЕЗОМАСШТАБНЫМИ ЛИНИЯМИ ШКВАЛОВ 129
5.1 Кучево-дождевая облачность и возникновение шквалов в регионе 132
5.1.1 Определение и повторяемость шквалов в регионе 132
5.1.2 Роль конвективных осадков в генерации шквалов 135
5.2 Изменение метеопараметров при прохождении МЛШ 139
5.2.1 Давление, температура и ветер у поверхности земли
при прохождении линий шквалов 139
5.2.2. Сопоставление радиолокационной и наземной информации 141
5.3 Линия шквалов как плотностной поток 145
5.3.1 Зона формирования оттока 146
4
5.3.2 Прогноз скорости ветра у земли 148
5.4 Шквалы локальных штормов 150
5.5 Реконструкция типа МЛШ по особенностям изменения приземного давления 152
5.5.1 Основная идея метода типизации барограмм 153
5.5.2 Классификация типа мезомасштабных систем по барограммам...155
5.6 Выводы к главе 5 160
ГЛАВА 6. АНАЛИЗ И ИНТЕРПРЕТАЦИЯ МЕЗОМАСШТАБНЫХ ЦИРКУЛЯЦИЙ В СИСТЕМАХ ОСАДКОВ 163
6.1 Структура циркуляций мезомасштабных конвективных систем 164
6.2 Теплая несущая полоса во фронтах и циклонах 166
6.3 К вопросу о системе координат 168
6.3.1. Линии тока в «сверхбыстрой» МЛШ 169
6.3.2. Линии тока в «сверхмедленной» МЛШ 175
6.4 Примеры использования MWR в прогнозе 177
6.4.1 Тыловой вток и направление движения МЛШ 177
6.4.2 Шторма с индивидуальным развитием 180
6.4.3 Квазистационарные фронты 182
6.4.4 Особенности формирование полос осадков на фронтах и
в циклонах 190
6.5 Втоки в зону осадков слоистообразной облачности 193
6.6 Выводы к главе 6 196
ЗАКЛЮЧЕНИЕ 199
СПИСОК ЛИТЕРАТУРЫ 207
Термин «мезомасштабный» впервые употребил M. Лигда
(Ligda, 1951 [30]) для обозначения радиоэха штормов, наблюдаемых на экране радара, и имеющих промежуточные размеры между конвективными (~2 км) и
Рис. В1 Пространственно - временные масштабы некоторых атмосферных явлений:
А - пыльные вихри (dust devils); B - торнадо и смерчи; С — кучевые облака Си;
D - нисходящие порывы (downburst); E - фронт порывистости (gust front); F- мезоциклоны; G - мультиячейковый шторм; H - бризовые, горно-долинные циркуляции, мезомасштабные зоны пониженного и повышенного давления (mesohigh, mesolow);
I - скопления зон осадков (precipitation bands); J- береговой фронт (coastal front);
K - мезомасштабные конвективные системы; L - струи нижних уровней;
M - «сухая» линия (dryline); N - тропические циклоны; O - струя верхних уровней;
P - фронт у поверхности; Q - внетропический циклон и антициклоны; R - ложбины и гребни длинных волн (Поработе Блустайна, 1992 [7])
синоптическими (~2000 км) явлениями. Добавочное разбиение на мезомасштабы у и a (Orlanski, 1975 [36]) в целом не изменило взгляд на эти
8
явления как промежуточные, введя лишь определенный элемент иерархии, удобный с точки зрения динамики явлений. Равнозначна и другая терминология. Так, с точки зрения физики облаков синоптический масштаб можно рассматривать как макромасштаб (Мазин и Хргиан, 1989, с.13 [52]), а с точки зрения численного анализа (Bluestein,1992 [7]), явления масштаба мезо-a (200-2000 км), характеризующиеся явной квазигеострофичностью движений, следует называть субсиноптическими. На рис.В1 показаны пространственно - временные масштабы некоторых атмосферных явлений. В такой схеме мезомасштабная конвективная система предстает как явление субсиноптического масштаба (мезо-a) с элементами мезо -в и -у.
В метеорологии, как и в любом другом разделе естествознания, сосуществуют интуитивный и дедуктивный методы исследования. Первый открывает законы на основе наблюдений, а второй, доказывая правильность этих законов, выводит новые. Например, внетропические циклоны сначала были увидены, затем проанализированы, а позднее численно предсказаны. Наблюдения и квазигеострофическая теория явлений масштаба более 1000 км и временем жизни более суток достигли сегодня той степени согласия, что дают основание для введения синоптико-динамической метеорологии как комплексного раздела атмосферных наук [7]. Сегодня в практике центров прогноза погоды положение дел таково, что «видение синоптической ситуации» более применяется к набору численных прогностических карт1 и спутниковой анимации, нежели к составлению синоптических карт и их анализа. В области мезомасштабного (сверхкраткосрочного) прогноза систем осадков и связанных с ними явлений, говорить о подобном симбиозе практической, экспериментальной и теоретической сторон мезометеорологии к настоящему времени еще рано.
Главным образом, такая ситуация возникла из-за недооценки практического применения мезомасштабного анализа, при значительных
1 даже климатолог зачастую изучает климат последней половины ХХ века по реанализу NCEP/NCAR или ECMWF
успехах в физике облаков, радарной, спутниковой метеорологии, в численном
моделировании. Физика облаков всё более углублялась в микрофизические
свойства конкретной порции облачного объема, радарная метеорология решала
технические проблемы, в области численного моделирования шёл поиск
математических подходов к решению гидродинамических уравнений.
Практическое внедрение, позволявшее ускоренную проверку гипотез и
моделей при этом до недавнего времени запаздывало, ведя к отсутствию
обратной связи между повседневным наблюдением, теорией и экспериментом.
В силу этого не
Рис.В2 Схематическое представление
оправдываемости различных методов
сверхкраткосрочного прогноза.1- метод линейной
экстраполяции;2 - опыт и знания метеоролога;
3 - мезомасштабные модели; 4- модели большого
масштаба; 5 - климатологические данные.
По оси ординат отложена оправдываемость мезомасштабного
прогноза в %
(Из Браунинга, 1989 [11]) поскольку
производилось и обучения
специалистов в
мезомасштабном анализе,
специфические требования к
подготовке которых
очевидны: актуальность
сверхкраткосрочных
прогнозов погоды
исчисляется в лучшем
случае часами, а объём
необходимой информации
несоизмеримо больше, чем в
других областях. Собственно
говоря, не ясно и то, что
именно является объектом
прогноза,
мезомасштабные
системы осадков и облачности вызываются различными по физической природе процессами (не менее пяти по Davies, 1996 [19]) от синергического взаимодействия конвективных ячеек в шторме до классического фронтогенеза, не говоря о том, что существует спектр явлений (например, бризовая
9
10
циркуляция, гравитационные волны и др.), которые сами по себе также должны быть спрогнозированы.
Тем не менее, из практики краткосрочного прогноза очевидно, что даже простая идентификация мезомасштабного явления и оценка его климатической повторяемости в значительной мере улучшает качество «nowcasting», определяемого ВМО как детальный анализ текущей погоды и её экстраполяция на 2 часа вперед (см. рис.В2, Browning, 1989 [11]). Для восполнения пробела в области использования технических средств и интерпретации мезомасштабных явлений ВМО и национальные гидрометслужбы к 90-м годам выпустили ряд индивидуальных и коллективных учебно-методических пособий (Clift 1985 [16], Вельтищев 1988 [50], Browning and Collier 1989 [10], Browning 1989 [11], Mesoscale forecasting ...1989 [35], Васильев, 1999 и др. [49]).
Научный интерес к организации и эволюции мезомасштабных конвективных систем (МКС), по-видимому, достиг своего апогея к середине 90-х годов. В этот период по свидетельству B. Смалла (Smull, 1995 [41]) только в реферируемых журналах США по теме, связанной с системами осадков конвективной природы (convectively induced), печаталось более 100 работ в год. Следует пояснить, что, несмотря на широкое использование термина МКС, смысл, вкладываемый в данное понятие, сильно различается. Приведем лишь некоторые определения МКС, данные в известных монографиях последнего десятилетия. Обобщая аспекты МКС, P. Хауз (Houze, 1993, с.334 [23]), дает следующее определение: «МКС — это облачная система, чье возникновение связано с ансамблем штормов и которая производит область непрерывных осадков горизонтального масштаба ~100 км или более, по крайней мере, в одном направлении». Согласно Г. Блустайну (Bluestain, 1993, c.521 [8]), МКС — это организованная группа основных «конструктивных» конвективных блоков (set of basic convective building blocks), подразумевая под блоками многоячейковые и суперячейковые шторма (см. G на рис.В1)
Есть и другие менее формализованные определения МКС. Например, У. Коттон и Р. Этнес (Cotton и Athnes, 1989, с.593 [17]) под МКС понимают
11
Рис. В3 Определение термина «мезомасштабные конвективные системы»
а) схема, составленная по представлению Н.Вельтищева,1988 [50 ];
б) схематическое разделение различных форм конвекции по П.Рэю, 1990 [37]
систему глубокой конвекции, по размерам большую, чем индивидуальный шторм, которая часто характеризуется обширным слоистообразным облаком- наковальней (stratiform-anvil cloud) в средней и верхней тропосфере протяженностью несколько сотен километров. Типичное время жизни такой облачной системы от 6 до 12 часов, хотя в некоторых случаях stratiform-anvil может сохраняться несколько дней.
Несмотря на сходство определений в той части, что МКС - это система (группа, ансамбль) облачности и осадков большая, по масштабу, чем шторм, далеко не ясно, каковы пространственные и временные рамки МКС как атмосферного объекта. Например, определение Г. Блустайна, фиксируя построение ячеек СЬ в мезомасштабные полосовые или не полосовые структуры, позволяет отнести к МКС линии конвективных осадков длиной несколько десятков километров (см! на рис.В1). Р.Хауз, напротив, рассматривает такие линии штормов как отдельный объект (глава 8, с.329 [23]), а МКС представляет как комплекс индивидуальных штормов или линий штормов с масштабами зон осадков, большими 100 км. В определении Коттона и Этнеса (как и у Хауза) минимальный горизонтальный масштаб МКС (более «шторма») явно не задан, но указывается нижний предел времени жизни
12
системы - несколько часов. Поскольку верхний предел линейных масштабов не задан ни в одной из выше описанных формулировок МКС, можно лишь предположить, что само прилагательное «мезомасштабный», следуя И. Орлански, ограничивает размеры системы несколькими сотнями километров (рис.В1). Согласно приведенным формулировкам, МКС, очевидно, наиболее крупный и долгоживущий объект из семейства конвективных облаков (рис.В2, рис.ВЗ), включая в себя линии шквалов, мезомасштабные конвективные комплексы и группы конвективных штормов.
С другой стороны Н. Вельтищев (с.29 [50]) расширяет термин «мезомасштабная конвективная система» на все морфогенетические структуры глубокой конвекции (см. рис.ВЗ а), как это было в более раннем определении МКС, и определяет ее как систему осадков с горизонтальным масштабом 10¬500 км и со значительными конвективными явлениями в течение некоторой части жизни. До определенной степени выделение симметричных мезо-в структур поля глубокой конвекции основано на наблюдениях (Желнин, Старостин, 1987 [51]). Так, А.Старостин (Starostin, 1995 [42]) показал, что в 60 % случаев внефронтальных ситуаций или медленно движущихся фронтов в Молдавии радиоэхо конвективных облаков, аккумулированное в лагранжевой движущейся со скоростью ячеек СЬ системе координат, напоминает мезомасштабные открытые ячейки мелкой конвекции диаметром около 30 км, наблюдавшиеся со спутников. Подразделение на симметричные и линейные типы глубокой конвекции масштаба мезо-a по всей видимости неприемлемо в частности из-за того, что значительная часть мезомасштабных конвективных комплексов в своей структуре является линиями шквалов, или другими линейно-подобными формами.
П. Рей (Ray, 1990 [37]) справедливо считает, что среди различных форм глубокой конвекции более или менее четко можно выделить только изолированные одиночные СЬ и суперячейковые облака, имеющие различную динамику, тогда как полностью разделить термины «мультиячейковые облака», «линии шквалов», «полосы осадков» (rainbands) и мезомасштабные
13
конвективные комплексы (МКК) невозможно (см. рис.ВЗ б). П. Рей дает
следующие критерии облачной системы, которая могла бы быть названа МКС:
1) время жизни системы должно быть большим, чем время циркуляции воздуха
через систему; 2) конвективная
N система должна включать
различные элементы; 3)
конвективные элементы
g должны взаимодействовать, как
ID
Рис.В4 Концептуальная модель мезо-a кластера а) во времени, б) по пространству воздушной массы. сп - ячейки осадков мезо-у; mftn - малые скопления мезо-в масштаба; 1,2 - большие мезо-в скопления.
H - высота облачности, Z - р/л отражаемость, R -горизонтальная протяженность (Из Abdoulaev, 1995 [1])
между собой, так и с
окружением, так что
морфологически каждый из
элементов неявно меняется при
взаимодействии. Очевидно, что
ни тип организации конвекции,
ни наличие слоистообразной
облачности, ни геометрические
ограничения, не встречаются в
данном критерии.
Придерживаясь по сути
сходных к последнему взглядов
на МКС, C. Абдуллаев
(Abdoulaev, 1995 [1]) на основе
анализа радарных данных
показал, что неявное
взаимодействие элементов
МКС выражается в последовательном доминировании элементов мезо-a- кластера (рис.В4 a-б). Наиболее интенсивные на данный момент времени конвективные элементы (у-ячейки) последовательно возникают в доминантных малых мезо-в скоплениях (или доминантных мульти- или суперячейковых штормах), которые в свою очередь образуют большие мезо-в скопления,
14
определяя пульсирующий характер интенсивности кластера. Важно отметить, что в модели эволюции типичного кластера пространственные и временные масштабы конвективных явлений ограничиваются областью развития, имеющей горизонтальные размеры около 300 км и период активной конвекции около 7 часов.
Таким образом, в литературе встречаются различные взгляды на МКС, как требующие взаимодействия между конвективными элементами, так и основанные на условии определенной организации в них конвективной и слоистообразной облачности. С точки зрения прогноза важно, что многие опасные явления погоды с периодами жизни менее часа: град, шквалистые усиления ветра, смерчи — обусловлены элементами МКС. Поэтому если между элементами МКС происходит взаимодействие, то очевидно, что есть возможность выделить это влияние во времени, т.е. предсказать дальнейшую эволюцию элементов и их интенсивность. С другой стороны требование определенной организации, введение морфометрических характеристик также имеет прогностическое значение, поскольку: а) отражает определенный этап эволюции системы, что по крайней мере может использоваться в сверхкраткосрочном прогнозе погоды; б) несомненно, что геометрическая организация (например, линии шквалов) и наличие слоистообразного региона важны в прогнозе ветра и обильных осадков.
Данная работа посвящена исследованию прогностических возможностей, заложенных в наблюдаемой морфологии и эволюции МКС, следуя последнему из изложенных выше определений, т. е. попытке рассмотрения совокупности всех конвективных и слоистообразных элементов в их непосредственном взаимодействии. Последнее условие накладывает серьёзное ограничение на выбор средств наблюдения и способы анализа, поскольку необходимо адекватно отобразить как наименьшие элементы (т.е. ячейки осадков), так и всю систему в целом. Наиболее универсальный инструмент в этом случае - это метеорологический радиолокатор (МРЛ). Доплеровские МРЛ позволяют кроме радиолокационной отражаемости также оценить горизонтальную и
15
вертикальную скорость облачных частиц и капель осадков, т.е. обнаружить структуру циркуляции внутри облака. В этой работе будут использованы наблюдения с помощью доплеровского радара DWSR-88S, проведенные в течении ряда лет в Центре метеорологических исследований Федерального университета г.Пелотас (штат Рио Гранде до Сул, Бразилия) в сочетании с другими типами данных.
В шести главах данной работы сделана попытка показать, что на основе радиолокационных наблюдений можно построить объектно-ориентированную классификацию мезомасштабных систем осадков, а затем выделить ряд признаков объектов и явлений, эволюцию которых в значительной мере можно предсказать. Глава 1 представляет краткий обзор структуры и организации некоторых мезомасштабных систем осадков (МСО), таких как мезомасштабные комплексы, мультиячейковые штормы и линии шквалов. Здесь под линиями шквалов (от американского термина «squall line») подразумеваются мезомасштабные циркуляционные системы глубокой конвекции, в которых конвективные элементы организуются в узкие полосы протяженностью порядка 200 км в течение времени от нескольких часов до полусуток и помимо других опасных явлений производят шквалистые усиления ветра. Демонстрируются очевидные достоинства отдельных классификаций МСО, оценивается возможность практического применения их в прогнозе, в т.ч. возможный масштаб и заблаговременность прогноза по радарным и спутниковым данным.
В главе 2 описывается регион исследования, доступные данные и главные черты используемых методов (детали методов для удобства описываются в последующих главах). Рассмотрены региональные особенности процессов возникновения глубокой конвекции. Показывается, что многообразие погодных условий крайнего юга Бразилии ведет к возникновению спектра внетропических и тропических систем осадков на протяжении всего года, что делает регион идеальной природной лабораторией для радарных исследований.
16
Далее, в главе 3 приводятся аргументы в пользу того, что морфологические особенности МСО следует описывать лишь в контексте понятия о стадии эволюции системы, тесно связанной с пространственно¬временной иерархией её элементов. Эти принципы были положены в основу морфологической классификации МСО-МКС, учитывающей линейную организацию и интенсивность конвективных элементов в стадии максимального развития системы. Аргументируется, что базовая морфологическая классификация всех МСО с подразделением на 6 типов удобна для первичного анализа выборки радарных наблюдений, она отражает особенности региональных синоптических процессов, их сезонную ритмику, в т.ч. выявлена значимость вектора пассивной трансляции в организации МКС. Сделано также сравнение некоторых морфометрических характеристик МСО, определяемых по радарным данным со спутниковыми изображениями и данными грозоотметчиков в рамках концепции о потенциально возможной области осадков, переносимых с воздушной массой.
Глава 4 является основной в представляемой работе и посвящена анализу эволюции МКС с линейной организацией конвективных элементов - мезомасштабных линий шквалов (МЛШ). Доказывается, что существует два основных типа МЛШ, элементы которых ведут себя различно по отношению к вектору пассивного переноса. Определяя величину нормальной и параллельной составляющей вектора развития линии, удается предсказать многие важные характеристики МКС, такие как линейные размеры зоны осадков слоистообразной облачности, её положение относительно конвективного региона, в т.ч. асимметрию между зоной осадков слоистообразной облачности и конвективным регионом. Классификация МЛШ тропических и умеренных широт, наблюдаемых в других регионах, также подтверждает выводы. Представлены доказательства, что структура движений в линиях шквалов с положительным и отрицательным развитием по отношению к компоненте переноса существенно отличается, отражая их неодинаковую природу.
17
В пятой главе описывается применение предлагаемой классификации линий шквалов для интерпретации временных серий давления, ветра и других метеопараметров, регистрируемых у поверхности земли на метеостанциях. Подтверждается, что обычный некогерентный радар — это эффективный инструмент для наблюдения морфологии и эволюции мезомасштабных систем осадков, а доплеровский радар незаменим не только для изучения собственно мезомасштабных циркуляций внутри зон осадков, но и для интерпретации приземных полей давления, ветра и температуры. В частности, исследованы возможности применения некогерентного и доплеровского радара в оперативном анализе и прогнозе шквалистых усилений ветра, связанных с различными типами МКС. Обосновываются принципы климатологии мезомасштабных систем на основе стандартных барограмм, анеморумбограмм и плювиограмм.
В главе 6, органически связанной с предыдущими, предлагается способ представления относительных движений в МКС, где основой инерциальной системы отсчёта является скорость переноса. Метод, названный (mean wind relative) MWR, опробуется на анализе доплеровских скоростей, полученных одиночным доплеровским радаром для линий шквалов различного типа, облачных вихрей, систем осадков стационарных фронтов и др. Показано, что в MWR происходит своего рода «вертикализация» движений в конвективном регионе, что, по-видимому, означает, что циркуляция конвективной системы до некоторой степени переносится с ветром в средней тропосфере. Доказывается как исследовательский потенциал метода, так и его оперативная применимость для выделения зон тылового втока в систему и оценки вектора развития МЛШ.
В заключении подводятся итоги работы и кратко обсуждаются возможные направления будущих работ в исследовании мезомасштабных конвективных систем.
На защиту выносятся: 1) метод построения морфологической классификации систем осадков на основе радарных данных; 2) эволюционная
18
классификация линий шквалов и её прогностические следствия; 3) метод интерпретации доплеровских данных - MWR.
(Ligda, 1951 [30]) для обозначения радиоэха штормов, наблюдаемых на экране радара, и имеющих промежуточные размеры между конвективными (~2 км) и
Рис. В1 Пространственно - временные масштабы некоторых атмосферных явлений:
А - пыльные вихри (dust devils); B - торнадо и смерчи; С — кучевые облака Си;
D - нисходящие порывы (downburst); E - фронт порывистости (gust front); F- мезоциклоны; G - мультиячейковый шторм; H - бризовые, горно-долинные циркуляции, мезомасштабные зоны пониженного и повышенного давления (mesohigh, mesolow);
I - скопления зон осадков (precipitation bands); J- береговой фронт (coastal front);
K - мезомасштабные конвективные системы; L - струи нижних уровней;
M - «сухая» линия (dryline); N - тропические циклоны; O - струя верхних уровней;
P - фронт у поверхности; Q - внетропический циклон и антициклоны; R - ложбины и гребни длинных волн (Поработе Блустайна, 1992 [7])
синоптическими (~2000 км) явлениями. Добавочное разбиение на мезомасштабы у и a (Orlanski, 1975 [36]) в целом не изменило взгляд на эти
8
явления как промежуточные, введя лишь определенный элемент иерархии, удобный с точки зрения динамики явлений. Равнозначна и другая терминология. Так, с точки зрения физики облаков синоптический масштаб можно рассматривать как макромасштаб (Мазин и Хргиан, 1989, с.13 [52]), а с точки зрения численного анализа (Bluestein,1992 [7]), явления масштаба мезо-a (200-2000 км), характеризующиеся явной квазигеострофичностью движений, следует называть субсиноптическими. На рис.В1 показаны пространственно - временные масштабы некоторых атмосферных явлений. В такой схеме мезомасштабная конвективная система предстает как явление субсиноптического масштаба (мезо-a) с элементами мезо -в и -у.
В метеорологии, как и в любом другом разделе естествознания, сосуществуют интуитивный и дедуктивный методы исследования. Первый открывает законы на основе наблюдений, а второй, доказывая правильность этих законов, выводит новые. Например, внетропические циклоны сначала были увидены, затем проанализированы, а позднее численно предсказаны. Наблюдения и квазигеострофическая теория явлений масштаба более 1000 км и временем жизни более суток достигли сегодня той степени согласия, что дают основание для введения синоптико-динамической метеорологии как комплексного раздела атмосферных наук [7]. Сегодня в практике центров прогноза погоды положение дел таково, что «видение синоптической ситуации» более применяется к набору численных прогностических карт1 и спутниковой анимации, нежели к составлению синоптических карт и их анализа. В области мезомасштабного (сверхкраткосрочного) прогноза систем осадков и связанных с ними явлений, говорить о подобном симбиозе практической, экспериментальной и теоретической сторон мезометеорологии к настоящему времени еще рано.
Главным образом, такая ситуация возникла из-за недооценки практического применения мезомасштабного анализа, при значительных
1 даже климатолог зачастую изучает климат последней половины ХХ века по реанализу NCEP/NCAR или ECMWF
успехах в физике облаков, радарной, спутниковой метеорологии, в численном
моделировании. Физика облаков всё более углублялась в микрофизические
свойства конкретной порции облачного объема, радарная метеорология решала
технические проблемы, в области численного моделирования шёл поиск
математических подходов к решению гидродинамических уравнений.
Практическое внедрение, позволявшее ускоренную проверку гипотез и
моделей при этом до недавнего времени запаздывало, ведя к отсутствию
обратной связи между повседневным наблюдением, теорией и экспериментом.
В силу этого не
Рис.В2 Схематическое представление
оправдываемости различных методов
сверхкраткосрочного прогноза.1- метод линейной
экстраполяции;2 - опыт и знания метеоролога;
3 - мезомасштабные модели; 4- модели большого
масштаба; 5 - климатологические данные.
По оси ординат отложена оправдываемость мезомасштабного
прогноза в %
(Из Браунинга, 1989 [11]) поскольку
производилось и обучения
специалистов в
мезомасштабном анализе,
специфические требования к
подготовке которых
очевидны: актуальность
сверхкраткосрочных
прогнозов погоды
исчисляется в лучшем
случае часами, а объём
необходимой информации
несоизмеримо больше, чем в
других областях. Собственно
говоря, не ясно и то, что
именно является объектом
прогноза,
мезомасштабные
системы осадков и облачности вызываются различными по физической природе процессами (не менее пяти по Davies, 1996 [19]) от синергического взаимодействия конвективных ячеек в шторме до классического фронтогенеза, не говоря о том, что существует спектр явлений (например, бризовая
9
10
циркуляция, гравитационные волны и др.), которые сами по себе также должны быть спрогнозированы.
Тем не менее, из практики краткосрочного прогноза очевидно, что даже простая идентификация мезомасштабного явления и оценка его климатической повторяемости в значительной мере улучшает качество «nowcasting», определяемого ВМО как детальный анализ текущей погоды и её экстраполяция на 2 часа вперед (см. рис.В2, Browning, 1989 [11]). Для восполнения пробела в области использования технических средств и интерпретации мезомасштабных явлений ВМО и национальные гидрометслужбы к 90-м годам выпустили ряд индивидуальных и коллективных учебно-методических пособий (Clift 1985 [16], Вельтищев 1988 [50], Browning and Collier 1989 [10], Browning 1989 [11], Mesoscale forecasting ...1989 [35], Васильев, 1999 и др. [49]).
Научный интерес к организации и эволюции мезомасштабных конвективных систем (МКС), по-видимому, достиг своего апогея к середине 90-х годов. В этот период по свидетельству B. Смалла (Smull, 1995 [41]) только в реферируемых журналах США по теме, связанной с системами осадков конвективной природы (convectively induced), печаталось более 100 работ в год. Следует пояснить, что, несмотря на широкое использование термина МКС, смысл, вкладываемый в данное понятие, сильно различается. Приведем лишь некоторые определения МКС, данные в известных монографиях последнего десятилетия. Обобщая аспекты МКС, P. Хауз (Houze, 1993, с.334 [23]), дает следующее определение: «МКС — это облачная система, чье возникновение связано с ансамблем штормов и которая производит область непрерывных осадков горизонтального масштаба ~100 км или более, по крайней мере, в одном направлении». Согласно Г. Блустайну (Bluestain, 1993, c.521 [8]), МКС — это организованная группа основных «конструктивных» конвективных блоков (set of basic convective building blocks), подразумевая под блоками многоячейковые и суперячейковые шторма (см. G на рис.В1)
Есть и другие менее формализованные определения МКС. Например, У. Коттон и Р. Этнес (Cotton и Athnes, 1989, с.593 [17]) под МКС понимают
11
Рис. В3 Определение термина «мезомасштабные конвективные системы»
а) схема, составленная по представлению Н.Вельтищева,1988 [50 ];
б) схематическое разделение различных форм конвекции по П.Рэю, 1990 [37]
систему глубокой конвекции, по размерам большую, чем индивидуальный шторм, которая часто характеризуется обширным слоистообразным облаком- наковальней (stratiform-anvil cloud) в средней и верхней тропосфере протяженностью несколько сотен километров. Типичное время жизни такой облачной системы от 6 до 12 часов, хотя в некоторых случаях stratiform-anvil может сохраняться несколько дней.
Несмотря на сходство определений в той части, что МКС - это система (группа, ансамбль) облачности и осадков большая, по масштабу, чем шторм, далеко не ясно, каковы пространственные и временные рамки МКС как атмосферного объекта. Например, определение Г. Блустайна, фиксируя построение ячеек СЬ в мезомасштабные полосовые или не полосовые структуры, позволяет отнести к МКС линии конвективных осадков длиной несколько десятков километров (см! на рис.В1). Р.Хауз, напротив, рассматривает такие линии штормов как отдельный объект (глава 8, с.329 [23]), а МКС представляет как комплекс индивидуальных штормов или линий штормов с масштабами зон осадков, большими 100 км. В определении Коттона и Этнеса (как и у Хауза) минимальный горизонтальный масштаб МКС (более «шторма») явно не задан, но указывается нижний предел времени жизни
12
системы - несколько часов. Поскольку верхний предел линейных масштабов не задан ни в одной из выше описанных формулировок МКС, можно лишь предположить, что само прилагательное «мезомасштабный», следуя И. Орлански, ограничивает размеры системы несколькими сотнями километров (рис.В1). Согласно приведенным формулировкам, МКС, очевидно, наиболее крупный и долгоживущий объект из семейства конвективных облаков (рис.В2, рис.ВЗ), включая в себя линии шквалов, мезомасштабные конвективные комплексы и группы конвективных штормов.
С другой стороны Н. Вельтищев (с.29 [50]) расширяет термин «мезомасштабная конвективная система» на все морфогенетические структуры глубокой конвекции (см. рис.ВЗ а), как это было в более раннем определении МКС, и определяет ее как систему осадков с горизонтальным масштабом 10¬500 км и со значительными конвективными явлениями в течение некоторой части жизни. До определенной степени выделение симметричных мезо-в структур поля глубокой конвекции основано на наблюдениях (Желнин, Старостин, 1987 [51]). Так, А.Старостин (Starostin, 1995 [42]) показал, что в 60 % случаев внефронтальных ситуаций или медленно движущихся фронтов в Молдавии радиоэхо конвективных облаков, аккумулированное в лагранжевой движущейся со скоростью ячеек СЬ системе координат, напоминает мезомасштабные открытые ячейки мелкой конвекции диаметром около 30 км, наблюдавшиеся со спутников. Подразделение на симметричные и линейные типы глубокой конвекции масштаба мезо-a по всей видимости неприемлемо в частности из-за того, что значительная часть мезомасштабных конвективных комплексов в своей структуре является линиями шквалов, или другими линейно-подобными формами.
П. Рей (Ray, 1990 [37]) справедливо считает, что среди различных форм глубокой конвекции более или менее четко можно выделить только изолированные одиночные СЬ и суперячейковые облака, имеющие различную динамику, тогда как полностью разделить термины «мультиячейковые облака», «линии шквалов», «полосы осадков» (rainbands) и мезомасштабные
13
конвективные комплексы (МКК) невозможно (см. рис.ВЗ б). П. Рей дает
следующие критерии облачной системы, которая могла бы быть названа МКС:
1) время жизни системы должно быть большим, чем время циркуляции воздуха
через систему; 2) конвективная
N система должна включать
различные элементы; 3)
конвективные элементы
g должны взаимодействовать, как
ID
Рис.В4 Концептуальная модель мезо-a кластера а) во времени, б) по пространству воздушной массы. сп - ячейки осадков мезо-у; mftn - малые скопления мезо-в масштаба; 1,2 - большие мезо-в скопления.
H - высота облачности, Z - р/л отражаемость, R -горизонтальная протяженность (Из Abdoulaev, 1995 [1])
между собой, так и с
окружением, так что
морфологически каждый из
элементов неявно меняется при
взаимодействии. Очевидно, что
ни тип организации конвекции,
ни наличие слоистообразной
облачности, ни геометрические
ограничения, не встречаются в
данном критерии.
Придерживаясь по сути
сходных к последнему взглядов
на МКС, C. Абдуллаев
(Abdoulaev, 1995 [1]) на основе
анализа радарных данных
показал, что неявное
взаимодействие элементов
МКС выражается в последовательном доминировании элементов мезо-a- кластера (рис.В4 a-б). Наиболее интенсивные на данный момент времени конвективные элементы (у-ячейки) последовательно возникают в доминантных малых мезо-в скоплениях (или доминантных мульти- или суперячейковых штормах), которые в свою очередь образуют большие мезо-в скопления,
14
определяя пульсирующий характер интенсивности кластера. Важно отметить, что в модели эволюции типичного кластера пространственные и временные масштабы конвективных явлений ограничиваются областью развития, имеющей горизонтальные размеры около 300 км и период активной конвекции около 7 часов.
Таким образом, в литературе встречаются различные взгляды на МКС, как требующие взаимодействия между конвективными элементами, так и основанные на условии определенной организации в них конвективной и слоистообразной облачности. С точки зрения прогноза важно, что многие опасные явления погоды с периодами жизни менее часа: град, шквалистые усиления ветра, смерчи — обусловлены элементами МКС. Поэтому если между элементами МКС происходит взаимодействие, то очевидно, что есть возможность выделить это влияние во времени, т.е. предсказать дальнейшую эволюцию элементов и их интенсивность. С другой стороны требование определенной организации, введение морфометрических характеристик также имеет прогностическое значение, поскольку: а) отражает определенный этап эволюции системы, что по крайней мере может использоваться в сверхкраткосрочном прогнозе погоды; б) несомненно, что геометрическая организация (например, линии шквалов) и наличие слоистообразного региона важны в прогнозе ветра и обильных осадков.
Данная работа посвящена исследованию прогностических возможностей, заложенных в наблюдаемой морфологии и эволюции МКС, следуя последнему из изложенных выше определений, т. е. попытке рассмотрения совокупности всех конвективных и слоистообразных элементов в их непосредственном взаимодействии. Последнее условие накладывает серьёзное ограничение на выбор средств наблюдения и способы анализа, поскольку необходимо адекватно отобразить как наименьшие элементы (т.е. ячейки осадков), так и всю систему в целом. Наиболее универсальный инструмент в этом случае - это метеорологический радиолокатор (МРЛ). Доплеровские МРЛ позволяют кроме радиолокационной отражаемости также оценить горизонтальную и
15
вертикальную скорость облачных частиц и капель осадков, т.е. обнаружить структуру циркуляции внутри облака. В этой работе будут использованы наблюдения с помощью доплеровского радара DWSR-88S, проведенные в течении ряда лет в Центре метеорологических исследований Федерального университета г.Пелотас (штат Рио Гранде до Сул, Бразилия) в сочетании с другими типами данных.
В шести главах данной работы сделана попытка показать, что на основе радиолокационных наблюдений можно построить объектно-ориентированную классификацию мезомасштабных систем осадков, а затем выделить ряд признаков объектов и явлений, эволюцию которых в значительной мере можно предсказать. Глава 1 представляет краткий обзор структуры и организации некоторых мезомасштабных систем осадков (МСО), таких как мезомасштабные комплексы, мультиячейковые штормы и линии шквалов. Здесь под линиями шквалов (от американского термина «squall line») подразумеваются мезомасштабные циркуляционные системы глубокой конвекции, в которых конвективные элементы организуются в узкие полосы протяженностью порядка 200 км в течение времени от нескольких часов до полусуток и помимо других опасных явлений производят шквалистые усиления ветра. Демонстрируются очевидные достоинства отдельных классификаций МСО, оценивается возможность практического применения их в прогнозе, в т.ч. возможный масштаб и заблаговременность прогноза по радарным и спутниковым данным.
В главе 2 описывается регион исследования, доступные данные и главные черты используемых методов (детали методов для удобства описываются в последующих главах). Рассмотрены региональные особенности процессов возникновения глубокой конвекции. Показывается, что многообразие погодных условий крайнего юга Бразилии ведет к возникновению спектра внетропических и тропических систем осадков на протяжении всего года, что делает регион идеальной природной лабораторией для радарных исследований.
16
Далее, в главе 3 приводятся аргументы в пользу того, что морфологические особенности МСО следует описывать лишь в контексте понятия о стадии эволюции системы, тесно связанной с пространственно¬временной иерархией её элементов. Эти принципы были положены в основу морфологической классификации МСО-МКС, учитывающей линейную организацию и интенсивность конвективных элементов в стадии максимального развития системы. Аргументируется, что базовая морфологическая классификация всех МСО с подразделением на 6 типов удобна для первичного анализа выборки радарных наблюдений, она отражает особенности региональных синоптических процессов, их сезонную ритмику, в т.ч. выявлена значимость вектора пассивной трансляции в организации МКС. Сделано также сравнение некоторых морфометрических характеристик МСО, определяемых по радарным данным со спутниковыми изображениями и данными грозоотметчиков в рамках концепции о потенциально возможной области осадков, переносимых с воздушной массой.
Глава 4 является основной в представляемой работе и посвящена анализу эволюции МКС с линейной организацией конвективных элементов - мезомасштабных линий шквалов (МЛШ). Доказывается, что существует два основных типа МЛШ, элементы которых ведут себя различно по отношению к вектору пассивного переноса. Определяя величину нормальной и параллельной составляющей вектора развития линии, удается предсказать многие важные характеристики МКС, такие как линейные размеры зоны осадков слоистообразной облачности, её положение относительно конвективного региона, в т.ч. асимметрию между зоной осадков слоистообразной облачности и конвективным регионом. Классификация МЛШ тропических и умеренных широт, наблюдаемых в других регионах, также подтверждает выводы. Представлены доказательства, что структура движений в линиях шквалов с положительным и отрицательным развитием по отношению к компоненте переноса существенно отличается, отражая их неодинаковую природу.
17
В пятой главе описывается применение предлагаемой классификации линий шквалов для интерпретации временных серий давления, ветра и других метеопараметров, регистрируемых у поверхности земли на метеостанциях. Подтверждается, что обычный некогерентный радар — это эффективный инструмент для наблюдения морфологии и эволюции мезомасштабных систем осадков, а доплеровский радар незаменим не только для изучения собственно мезомасштабных циркуляций внутри зон осадков, но и для интерпретации приземных полей давления, ветра и температуры. В частности, исследованы возможности применения некогерентного и доплеровского радара в оперативном анализе и прогнозе шквалистых усилений ветра, связанных с различными типами МКС. Обосновываются принципы климатологии мезомасштабных систем на основе стандартных барограмм, анеморумбограмм и плювиограмм.
В главе 6, органически связанной с предыдущими, предлагается способ представления относительных движений в МКС, где основой инерциальной системы отсчёта является скорость переноса. Метод, названный (mean wind relative) MWR, опробуется на анализе доплеровских скоростей, полученных одиночным доплеровским радаром для линий шквалов различного типа, облачных вихрей, систем осадков стационарных фронтов и др. Показано, что в MWR происходит своего рода «вертикализация» движений в конвективном регионе, что, по-видимому, означает, что циркуляция конвективной системы до некоторой степени переносится с ветром в средней тропосфере. Доказывается как исследовательский потенциал метода, так и его оперативная применимость для выделения зон тылового втока в систему и оценки вектора развития МЛШ.
В заключении подводятся итоги работы и кратко обсуждаются возможные направления будущих работ в исследовании мезомасштабных конвективных систем.
На защиту выносятся: 1) метод построения морфологической классификации систем осадков на основе радарных данных; 2) эволюционная
18
классификация линий шквалов и её прогностические следствия; 3) метод интерпретации доплеровских данных - MWR.
Трехмерные поля радиолокационной отражаемости Z являются уникальным источником сведений о морфологии и эволюции мезомасштабных систем осадков (МСО). Поле радиальных скоростей VR, получаемое на выходе когерентных радарных систем, позволяет к тому же оценить горизонтальные и вертикальные движения частиц осадков, т.е. исследовать циркуляции МСО. Несмотря на то, что радарные наблюдения используются для шторомооповещения и оценки сумм осадков на протяжении более шести десятилетий, оперативный анализ эволюции поля Z до недавнего времени ограничивался мощными локальными штормами, например, с целью воздействия на процесс градообразования. Прогноз эволюции МСО в целом оставался в сфере научных разработок, а сверхкраткосрочный прогноз (nowcasting) ограничивался экстраполяционными технологиями.
Как ни странно, но практический потенциал анализа данных радара стал очевиден лишь к середине 80-х годов с появлением в научном обиходе понятия мезомасштабная конвективная система (МКС), первоначально возникшего в спутниковой метеорологии. Не в последнюю очередь сыграл роль и тот факт, что в этот период с развитием новых информационных технологий, обычные и когерентные наземные радары были объединены в сети, позволяющие как оперативно получать информацию о цикле жизни системы, так и быстро обрабатывать её, совмещая с другими источниками данных. Именно на этом этапе развития мезомасштабной метеорологии, когда технические проблемы ассимиляции данных казалось бы были преодолены, и возникли вопросы: «Что такое МКС как объект прогноза? Каковы ее пространсвенно-временные масштабы? На какие видимые проявления в полях метеоэлементов МКС необходимо обратить внимание для того, чтобы описать ее дальнейшую эволюцию?» и т.д.
Необходимость выявления объекта прогноза, классификации, создания климатологии региональных систем осадков четко прослеживается во многих
200
зарубежных исследованиях. Несмотря на явные успехи в этом направлении, очевидно, что известные морфологические классификации МКС имеют существенные ограничения для использования в практическом прогнозе по ряду причин, в частности они: а) отражают форму поля осадков без точной привязки к стадии эволюции МКС; б) основаны на ограниченной выборке МКС, например, только на системах, производящих какое-либо опасное явление; в) используют набор структурных признаков, не обязательно проявляющихся в других регионах; а многочисленность классов и подтипов систем сужает возможность их идентификации в реальном режиме времени и т. д.
В представленной работе сделана попытка классификации морфолого-эволюционной мезомасштабных систем осадков с целью выделения объектов возможного прогноза. В частности, выделены характерные структуры с линейной организацией конвективных элементов - линии шквалов, которым посвящена основная часть исследования.
Как показано в главе 2, субтропики юга Бразилии являются идеальной природной лабораторией для круглогодичного исследования целого спектра систем осадков, ответственных за обычные в этом регионе грозы, град, шквалы и наводнения. Летом в условиях термического циклона развиваются типично тропические конвективные системы, прерываемые прохождениями холодных фронтов, а зимой и в переходные периоды регион является зоной интенсивного циклогенеза, имеющего значение для всего континента. В диссертации представлены результаты, обобщающие 7-летний опыт наблюдений и прогноза мезомасштабных систем осадков на юге Бразилии с использованием доплеровского радара DWSR-88S, установленного в метеорологическом центре федерального университета г.Пелотас, штат Рио Гранде до Сул. Показано, что такие данные достаточны для подразделения интенсивности и типа осадков на конвективные и слоистообразные по характерной форме поля отражаемости. Во всех случаях можно определить их максимальную радиолокационную отражаемость и высоты радиоэха. Определение скорости отдельных
201
радиолокационных ячеек или выявление отдельных фрагментов зон осадков, сохраняющих в течение определенного промежутка времени свою форму, позволяет определить скорость переноса элементов - скорость пассивной трансляции системы со среднетропосферным ветром - одно из принципиальных положений работ А.Н. Старостина и С.М. Абдуллаева, защищенных в Гидрометцентре РФ под руководством А. А. Желнина. Одним из важных применений скорости переноса является её совместимость с продуктами анализа аэрологического зондирования, данными реанализа и полями радиальных скоростей доплеровского радара. В частности, сравнение скоростей переноса и данных реанализа NCEP/NCAR позволило подтвердить репрезентативность нашей выборки для определения количественных характеристик классифицируемых МСО.
Для целей сверхкраткосрочного прогноза важно определить тип системы как можно на более раннем, но четко фиксируемым моменте её развития. В качестве основного методического принципа для классификации МСО масштаба более 100 км в главе 3 предложено, что таким моментом является время регистрации максимальных высот радиоэха и максимальной радиолокационной отражаемости. В этот промежуток жизни, названный стадией максимального развития, МСО конвективного и слоистообразного типа можно подразделить на линейные и на системы произвольной организации элементов в зависимости от наличия в них линейных структур протяженностью порядка 200 км. Установленная связь между высотами радиоэха и максимальной отражаемостью позволяет разделить системы с преобладающим конвективным элементом на классы с умеренной и глубокой конвекцией, базируясь на пороге отражаемости Z=55 dBZ.
Главным итогом предложенного метода является следующее. На стадии максимального развития по радиолокационным данным можно выделить шесть типов организации мезомасштабных систем осадков: линии глубокой конвекции; системы глубокой конвекции нелинейного типа (комплекс локальных штормов); полосы ливневых осадков; зоны ливневых осадков без
202
линейной организации; зоны слоистообразных осадков с линейной и произвольной организацией элементов системы. Предварительное исследование морфометрии классов позволяет утверждать, что пространственный масштаб всех систем заключается в пределах ~250-300 км. Выявлена значимость вектора пассивного переноса в организации мезомасштабных конвективных систем. Например, преобладание систем линейного типа, которым посвящена основная часть работы, отмечается в диапазоне скоростей среднетропосферного потока ~ от 10 до 20 м/с. Данное наблюдение подтверждается и анализом синоптических условий возникновения - линейные МСО возникают в различных крупномасштабных условиях, но преобладают в обстановке повышенной бароклинности. Изменение величины скорости переноса по сезонам года с общей тенденцией увеличения в зимний период и уменьшения летом, очевидно, определяет и сезонное изменение повторяемости морфологических типов МСО.
Показано, что предложенная классификация мезомасштабных систем осадков может использоваться не только для интерпретации радарных данных в других географических регионах, но и позволяет сопоставлять информацию, полученную другими дистанционными средствами. В частности показано, что сеть наземной регистрации грозовых разрядов выявляет те же пространственные масштабы, что и данные радара, а грозовая активность коррелирует с типом систем осадков.
Предложенная систематизация МСО может служить базисом для детального анализа эволюции каждого из классов систем с целью выявления характерного типа эволюции. Пример такого анализа представлен в главе 4, где исследуется выделенный на основании морфологической классификации линейный тип систем глубокой конвекции — мезомасштабные линии шквалов (МЛШ).
Основная идея такого анализа заключается в вычитании вектора пассивного переноса Vm из средней скорости смещения квазидвумерных МЛШ VL, что позволяет оперировать с той компонентой движения, которая связана в
203
чистом виде с появлением новых конвективных элементов системы, иначе говоря, с вектором развития МЛШ Vp.
Было установлено определяющее значение вектора развития для предсказания многих важных характеристик мезомасштабной системы, таких как линейные размеры зоны осадков слоистообразной облачности, её положение относительно конвективного региона. На основе значения модуля вектора развития предложена эволюционная классификация линий шквалов, согласно которой линии с положительным вектором развития («быстрые» линии) — это те, в которых вектор развития Vpn совпадает по направлению с
нормальной компонентой средней скорости переноса Vmn. «Медленные» МЛШ, или с отрицательным вектором развития, — это линии, в которых вектор развития Vpn противоположен по направлению к нормальной компоненте
средней скорости переноса Vmn .
Превышение модулем нормальной компоненты вектора развития значения ~3 м/с служит индикатором появления зоны слоистообразных осадков в зрелой стадии МЛШ. Установлена линейная зависимость максимальной ширины ЗОСО от скорости развития. В частности, для появления обширного ЗОСО ~100 км необходима средняя скорость развития ~7 м/с. Наблюдения таких явлений, как зоны слабой отражаемости, инкорпорированные в ЗОСО, позволяют предположить, что найденные связи являются следствием существования осадков слоистообразных облаков только в тех областях воздушной массы, переносимой со среднетропосферным ветром, которые ранее были заняты конвективными осадками. Органическая связь между появлением ЗОСО в тылу или впереди конвективной зоны МЛШ и величиной, а также направлением вектора нормального развития позволяют выделить два подкласса МЛШ: «сверхмедленные» и «сверхбыстрые». Одним из важных подтверждений целесообразности деления линий шквала на «сверхбыстрые» и «сверхмедленные» является проведенный анализ вертикальной структуры
204
движений в квазидвумерных МЛШ, показавший различие в распределении горизонтальной завихренности в этих линиях.
Предложенная эволюционная классификация линий шквалов, основанная на величине и направлении вектора развития, удовлетворительно описывает поведение МЛШ умеренных и тропических широт обоих полушарий на различных стадиях жизни, объясняя и обобщая результаты исследований последнего десятилетия. В частности, установлено, что преобладающее поведение от стадии формирования до стадии диссипации наиболее распространенных «сверхбыстрых» МЛШ - это «обратное развитие». На основании этих и других фактов предсказано, что сверхмедленные и сверхбыстрые МЛШ в конце стадии зрелости имеют асимметричную форму, т.е. часто обсуждаемые типы «симметричных» и «несимметричных» МКС - по сути лишь разные стадии МЛШ одного и того же типа.
Очевидно, что прогноз шквалов и климатология систем осадков, их производящих, актуальны для любого региона. В главе 5 показано, как используя очевидные особенности типов линейных и нелинейных мезомасштабных систем осадков, можно последовательно типизировать шквалистые усиления ветра по стандартным данным метеостанций в тех условиях, когда радарная информация недоступна. По существу деление шквалов на те, которые связаны с конвективными, слоистообразными осадками, и на сухие шквалы повторяет начальное деление МСО по типу осадков и их интенсивности. Анализ радиолокационных изображений показывает, что «сухие» шквалы практически исключены в зрелых «сверхбыстрых» МЛШ. Такие шквалы в этих линиях могут наблюдаться только при особой конфигурации поля осадков и асимметричном положении ЗОСО с соответствующей тыловой депрессией давления. «Сухие» шквалы могут быть следствием развития оттоков от локальных штормов в системах типа N1 или же в «быстрых» и «медленных» МЛШ, не формирующих плотные сегменты отражаемости, присущие «сверхбыстрым» линиям. Характерные особенности хода приземного давления (фронтальная мезодепрессия В, область
205
повышенного давления А и тыловая депрессия Вw) симметричных сверхбыстрых линий заложены в итоговую реконструкцию систем осадков, производящих «сухие» и «мокрые» шквалы. Показано, что наиболее интенсивные шквалы (>17 м/с) связаны со случаями МЛШ симметричной формы, что говорит о большей интенсивности шквалов в начале и середине её зрелой стадии. На основе 10-летней выборки установлено, что более 50% шквалистых усилений ветра связано со сверхбыстрыми МЛШ, имеющими ЗОСО, или с подобными им системами. В итоге «неклассифицированными» осталось 30% «сухих» шквалов. Найденная связь скорости максимального порыва и скорости МЛШ позволяет сформулировать последовательность прогноза шквалов по данным радара.
Адекватная интерпретация информации, поступающей с доплеровского радара, является залогом успешного её внедрения в повседневный прогноз. В интерпретации, как известно, важное место занимает используемая концептуальная модель явления. В дискуссионной главе 6 рассмотрены существующие концептуальные модели мезомасштабных конвективных систем и фронтальных полос осадков. Показано, что они отражают, в частности, различные взгляды на систему координат, в которой происходит ассимиляция данных и представление относительных движений. В главе 6 приводится обоснование того, что наиболее приемлемо проводить анализ радиолокационной информации в системе координат, движущейся со скоростью среднетропосферного ветра, т.н. MWR. Данная система позволяет вне зависимости от направления развития конвективной системы и пульсаций скорости ее перемещения определять положение наиболее важных потоков внутри системы для прогноза ее дальнейшей эволюции. Взаимное положение восходящих и нисходящих мезомасштабных потоков, различное для «быстрых» и «медленных» МЛШ и подобных им систем, позволяет, например, однозначно интерпретировать «теплые» и «холодные» участки фронтальных систем. В сочетании с накоплением зон осадков в системе координат, движущейся со скоростью переноса, MWR позволяет делать обоснованные прогнозы даже в
206
случаях квазистационарных фронтов, имеющих поперечные возмущения, т.е. в условиях, когда остальные концептуальные модели принципиально не работают.
С другой стороны показано, что в MWR четко отображаются втоки и оттоки от системы - важные элементы для прогноза локализации опасных явлений, связанных с развитием штормов и линий шквалов. Например, обнаружено, что во многих случаях в ЗОСО быстрых и медленных линий шквалов появляются нисходящие втоки воздуха из средней тропосферы, проявляющие себя соответственно как усиления или ослабления относительных движений. Такие мезомасштабные явления, очевидно, вызывают не только появления «тыловых» мезомасштабных депрессий, но и ведут к появлению «теплых» порывов ветров вне зон осадков.
На защиту выносится:
1) метод морфологической классификации шести типов систем осадков;
2) эволюционная классификация линий шквалов, основанная на сопоставлении величины и направления вектора развития;
3) метод представления доплеровской информации MWR, где в качестве основы системы координат выбрана скорость пассивного переноса системы;
а также соответствующие следствия этих методов. Стоит заметить, что смысловая ориентация данной работы на методы анализа и использование их в прогнозе не позволяет обсудить многие интересные факты, обнаруженные в процессе наблюдений.
Как ни странно, но практический потенциал анализа данных радара стал очевиден лишь к середине 80-х годов с появлением в научном обиходе понятия мезомасштабная конвективная система (МКС), первоначально возникшего в спутниковой метеорологии. Не в последнюю очередь сыграл роль и тот факт, что в этот период с развитием новых информационных технологий, обычные и когерентные наземные радары были объединены в сети, позволяющие как оперативно получать информацию о цикле жизни системы, так и быстро обрабатывать её, совмещая с другими источниками данных. Именно на этом этапе развития мезомасштабной метеорологии, когда технические проблемы ассимиляции данных казалось бы были преодолены, и возникли вопросы: «Что такое МКС как объект прогноза? Каковы ее пространсвенно-временные масштабы? На какие видимые проявления в полях метеоэлементов МКС необходимо обратить внимание для того, чтобы описать ее дальнейшую эволюцию?» и т.д.
Необходимость выявления объекта прогноза, классификации, создания климатологии региональных систем осадков четко прослеживается во многих
200
зарубежных исследованиях. Несмотря на явные успехи в этом направлении, очевидно, что известные морфологические классификации МКС имеют существенные ограничения для использования в практическом прогнозе по ряду причин, в частности они: а) отражают форму поля осадков без точной привязки к стадии эволюции МКС; б) основаны на ограниченной выборке МКС, например, только на системах, производящих какое-либо опасное явление; в) используют набор структурных признаков, не обязательно проявляющихся в других регионах; а многочисленность классов и подтипов систем сужает возможность их идентификации в реальном режиме времени и т. д.
В представленной работе сделана попытка классификации морфолого-эволюционной мезомасштабных систем осадков с целью выделения объектов возможного прогноза. В частности, выделены характерные структуры с линейной организацией конвективных элементов - линии шквалов, которым посвящена основная часть исследования.
Как показано в главе 2, субтропики юга Бразилии являются идеальной природной лабораторией для круглогодичного исследования целого спектра систем осадков, ответственных за обычные в этом регионе грозы, град, шквалы и наводнения. Летом в условиях термического циклона развиваются типично тропические конвективные системы, прерываемые прохождениями холодных фронтов, а зимой и в переходные периоды регион является зоной интенсивного циклогенеза, имеющего значение для всего континента. В диссертации представлены результаты, обобщающие 7-летний опыт наблюдений и прогноза мезомасштабных систем осадков на юге Бразилии с использованием доплеровского радара DWSR-88S, установленного в метеорологическом центре федерального университета г.Пелотас, штат Рио Гранде до Сул. Показано, что такие данные достаточны для подразделения интенсивности и типа осадков на конвективные и слоистообразные по характерной форме поля отражаемости. Во всех случаях можно определить их максимальную радиолокационную отражаемость и высоты радиоэха. Определение скорости отдельных
201
радиолокационных ячеек или выявление отдельных фрагментов зон осадков, сохраняющих в течение определенного промежутка времени свою форму, позволяет определить скорость переноса элементов - скорость пассивной трансляции системы со среднетропосферным ветром - одно из принципиальных положений работ А.Н. Старостина и С.М. Абдуллаева, защищенных в Гидрометцентре РФ под руководством А. А. Желнина. Одним из важных применений скорости переноса является её совместимость с продуктами анализа аэрологического зондирования, данными реанализа и полями радиальных скоростей доплеровского радара. В частности, сравнение скоростей переноса и данных реанализа NCEP/NCAR позволило подтвердить репрезентативность нашей выборки для определения количественных характеристик классифицируемых МСО.
Для целей сверхкраткосрочного прогноза важно определить тип системы как можно на более раннем, но четко фиксируемым моменте её развития. В качестве основного методического принципа для классификации МСО масштаба более 100 км в главе 3 предложено, что таким моментом является время регистрации максимальных высот радиоэха и максимальной радиолокационной отражаемости. В этот промежуток жизни, названный стадией максимального развития, МСО конвективного и слоистообразного типа можно подразделить на линейные и на системы произвольной организации элементов в зависимости от наличия в них линейных структур протяженностью порядка 200 км. Установленная связь между высотами радиоэха и максимальной отражаемостью позволяет разделить системы с преобладающим конвективным элементом на классы с умеренной и глубокой конвекцией, базируясь на пороге отражаемости Z=55 dBZ.
Главным итогом предложенного метода является следующее. На стадии максимального развития по радиолокационным данным можно выделить шесть типов организации мезомасштабных систем осадков: линии глубокой конвекции; системы глубокой конвекции нелинейного типа (комплекс локальных штормов); полосы ливневых осадков; зоны ливневых осадков без
202
линейной организации; зоны слоистообразных осадков с линейной и произвольной организацией элементов системы. Предварительное исследование морфометрии классов позволяет утверждать, что пространственный масштаб всех систем заключается в пределах ~250-300 км. Выявлена значимость вектора пассивного переноса в организации мезомасштабных конвективных систем. Например, преобладание систем линейного типа, которым посвящена основная часть работы, отмечается в диапазоне скоростей среднетропосферного потока ~ от 10 до 20 м/с. Данное наблюдение подтверждается и анализом синоптических условий возникновения - линейные МСО возникают в различных крупномасштабных условиях, но преобладают в обстановке повышенной бароклинности. Изменение величины скорости переноса по сезонам года с общей тенденцией увеличения в зимний период и уменьшения летом, очевидно, определяет и сезонное изменение повторяемости морфологических типов МСО.
Показано, что предложенная классификация мезомасштабных систем осадков может использоваться не только для интерпретации радарных данных в других географических регионах, но и позволяет сопоставлять информацию, полученную другими дистанционными средствами. В частности показано, что сеть наземной регистрации грозовых разрядов выявляет те же пространственные масштабы, что и данные радара, а грозовая активность коррелирует с типом систем осадков.
Предложенная систематизация МСО может служить базисом для детального анализа эволюции каждого из классов систем с целью выявления характерного типа эволюции. Пример такого анализа представлен в главе 4, где исследуется выделенный на основании морфологической классификации линейный тип систем глубокой конвекции — мезомасштабные линии шквалов (МЛШ).
Основная идея такого анализа заключается в вычитании вектора пассивного переноса Vm из средней скорости смещения квазидвумерных МЛШ VL, что позволяет оперировать с той компонентой движения, которая связана в
203
чистом виде с появлением новых конвективных элементов системы, иначе говоря, с вектором развития МЛШ Vp.
Было установлено определяющее значение вектора развития для предсказания многих важных характеристик мезомасштабной системы, таких как линейные размеры зоны осадков слоистообразной облачности, её положение относительно конвективного региона. На основе значения модуля вектора развития предложена эволюционная классификация линий шквалов, согласно которой линии с положительным вектором развития («быстрые» линии) — это те, в которых вектор развития Vpn совпадает по направлению с
нормальной компонентой средней скорости переноса Vmn. «Медленные» МЛШ, или с отрицательным вектором развития, — это линии, в которых вектор развития Vpn противоположен по направлению к нормальной компоненте
средней скорости переноса Vmn .
Превышение модулем нормальной компоненты вектора развития значения ~3 м/с служит индикатором появления зоны слоистообразных осадков в зрелой стадии МЛШ. Установлена линейная зависимость максимальной ширины ЗОСО от скорости развития. В частности, для появления обширного ЗОСО ~100 км необходима средняя скорость развития ~7 м/с. Наблюдения таких явлений, как зоны слабой отражаемости, инкорпорированные в ЗОСО, позволяют предположить, что найденные связи являются следствием существования осадков слоистообразных облаков только в тех областях воздушной массы, переносимой со среднетропосферным ветром, которые ранее были заняты конвективными осадками. Органическая связь между появлением ЗОСО в тылу или впереди конвективной зоны МЛШ и величиной, а также направлением вектора нормального развития позволяют выделить два подкласса МЛШ: «сверхмедленные» и «сверхбыстрые». Одним из важных подтверждений целесообразности деления линий шквала на «сверхбыстрые» и «сверхмедленные» является проведенный анализ вертикальной структуры
204
движений в квазидвумерных МЛШ, показавший различие в распределении горизонтальной завихренности в этих линиях.
Предложенная эволюционная классификация линий шквалов, основанная на величине и направлении вектора развития, удовлетворительно описывает поведение МЛШ умеренных и тропических широт обоих полушарий на различных стадиях жизни, объясняя и обобщая результаты исследований последнего десятилетия. В частности, установлено, что преобладающее поведение от стадии формирования до стадии диссипации наиболее распространенных «сверхбыстрых» МЛШ - это «обратное развитие». На основании этих и других фактов предсказано, что сверхмедленные и сверхбыстрые МЛШ в конце стадии зрелости имеют асимметричную форму, т.е. часто обсуждаемые типы «симметричных» и «несимметричных» МКС - по сути лишь разные стадии МЛШ одного и того же типа.
Очевидно, что прогноз шквалов и климатология систем осадков, их производящих, актуальны для любого региона. В главе 5 показано, как используя очевидные особенности типов линейных и нелинейных мезомасштабных систем осадков, можно последовательно типизировать шквалистые усиления ветра по стандартным данным метеостанций в тех условиях, когда радарная информация недоступна. По существу деление шквалов на те, которые связаны с конвективными, слоистообразными осадками, и на сухие шквалы повторяет начальное деление МСО по типу осадков и их интенсивности. Анализ радиолокационных изображений показывает, что «сухие» шквалы практически исключены в зрелых «сверхбыстрых» МЛШ. Такие шквалы в этих линиях могут наблюдаться только при особой конфигурации поля осадков и асимметричном положении ЗОСО с соответствующей тыловой депрессией давления. «Сухие» шквалы могут быть следствием развития оттоков от локальных штормов в системах типа N1 или же в «быстрых» и «медленных» МЛШ, не формирующих плотные сегменты отражаемости, присущие «сверхбыстрым» линиям. Характерные особенности хода приземного давления (фронтальная мезодепрессия В, область
205
повышенного давления А и тыловая депрессия Вw) симметричных сверхбыстрых линий заложены в итоговую реконструкцию систем осадков, производящих «сухие» и «мокрые» шквалы. Показано, что наиболее интенсивные шквалы (>17 м/с) связаны со случаями МЛШ симметричной формы, что говорит о большей интенсивности шквалов в начале и середине её зрелой стадии. На основе 10-летней выборки установлено, что более 50% шквалистых усилений ветра связано со сверхбыстрыми МЛШ, имеющими ЗОСО, или с подобными им системами. В итоге «неклассифицированными» осталось 30% «сухих» шквалов. Найденная связь скорости максимального порыва и скорости МЛШ позволяет сформулировать последовательность прогноза шквалов по данным радара.
Адекватная интерпретация информации, поступающей с доплеровского радара, является залогом успешного её внедрения в повседневный прогноз. В интерпретации, как известно, важное место занимает используемая концептуальная модель явления. В дискуссионной главе 6 рассмотрены существующие концептуальные модели мезомасштабных конвективных систем и фронтальных полос осадков. Показано, что они отражают, в частности, различные взгляды на систему координат, в которой происходит ассимиляция данных и представление относительных движений. В главе 6 приводится обоснование того, что наиболее приемлемо проводить анализ радиолокационной информации в системе координат, движущейся со скоростью среднетропосферного ветра, т.н. MWR. Данная система позволяет вне зависимости от направления развития конвективной системы и пульсаций скорости ее перемещения определять положение наиболее важных потоков внутри системы для прогноза ее дальнейшей эволюции. Взаимное положение восходящих и нисходящих мезомасштабных потоков, различное для «быстрых» и «медленных» МЛШ и подобных им систем, позволяет, например, однозначно интерпретировать «теплые» и «холодные» участки фронтальных систем. В сочетании с накоплением зон осадков в системе координат, движущейся со скоростью переноса, MWR позволяет делать обоснованные прогнозы даже в
206
случаях квазистационарных фронтов, имеющих поперечные возмущения, т.е. в условиях, когда остальные концептуальные модели принципиально не работают.
С другой стороны показано, что в MWR четко отображаются втоки и оттоки от системы - важные элементы для прогноза локализации опасных явлений, связанных с развитием штормов и линий шквалов. Например, обнаружено, что во многих случаях в ЗОСО быстрых и медленных линий шквалов появляются нисходящие втоки воздуха из средней тропосферы, проявляющие себя соответственно как усиления или ослабления относительных движений. Такие мезомасштабные явления, очевидно, вызывают не только появления «тыловых» мезомасштабных депрессий, но и ведут к появлению «теплых» порывов ветров вне зон осадков.
На защиту выносится:
1) метод морфологической классификации шести типов систем осадков;
2) эволюционная классификация линий шквалов, основанная на сопоставлении величины и направления вектора развития;
3) метод представления доплеровской информации MWR, где в качестве основы системы координат выбрана скорость пассивного переноса системы;
а также соответствующие следствия этих методов. Стоит заметить, что смысловая ориентация данной работы на методы анализа и использование их в прогнозе не позволяет обсудить многие интересные факты, обнаруженные в процессе наблюдений.



