ВЫСОКОТОЧНАЯ ЭЛЕКТРОФОТОМЕТРИЯ ЗАТМЕННЫХ ДВОЙНЫХ СИСТЕМ С ЭЛЛИПТИЧЕСКИМИ ОРБИТАМИ RR РЫСИ И AR КАССИОПЕИ
|
Введение
1 ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ И ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЗАТМЕННЫХ СИСТЕМ С ЭЛЛИПТИЧЕСКИМИ ОРБИТАМИ НА ПРИМЕРЕ АНАЛИЗА КРИВОЙ БЛЕСКА RR РЫСИ 13
§ 1.1. Основные теоретические соотношения, определяющие скорость вращения эллиптической орбиты из- за приливной и вращательной деформации компонент и эффектов общей теории относительности 13
§ 1.2. Краткое описание итерационного метода дифференциальных поправок для решения кривых блеска систем с эксцентричными орбитами 21
§ 1.3. Оценка доверительных интервалов для фотометрических элементов, определенных из анализа фотоэлектрических кривых блеска RR Рыси 28
ГЛАВА II. РАЗРАБОТКА ЧЕТЫРЕХКАНАЛЬНОГО ЗВЕЗДНОГО WBVR- ЭЛЕКТРОФОТОМЕТРА 39
§ 2.1. Обоснование конструкции фотометра и постановка задачи 39
§ 2.2. Основные узлы и принцип работы четырехканального фотометра на основе полупрозрачных алюминиевых слоев:
а). Светоделительный блок 41
б ). Оптическая схема 44
в). Электрическая схема 47
а). Основные свойства дихроичных покрытий и
светоделительный блок фотометра 53
б). Оптическая схема на основе дихроичных светоделителей 60
в). Спектральные кривые чувствительности каналов 63
г). Оценка поляризационных эффектов 65
§ 2.4. Эффективность работы четырехканального электрофотометра как при индивидуальных, так и массовых, каталожных, измерениях звезд 67
ГЛАВА III. ВЫСОКОТОЧНАЯ WBVR - ЭЛЕКТРОФОТОМЕТРИЯ ЗАТМЕННОЙ ДВОЙНОЙ СИСТЕМЫ RR РЫСИ 73
§ 3.1. Краткая история иследований системы и постановка задачи 73
§ 3.2. Многоцветные фотоэлектрические наблюдения
RR Lyn в фотометрической системе WBVR 75
§ 3.3. Определение фотометрических элементов системы
итерационным методом дифференциальных поправок 80
§ 4.2. Абсолютная и дифференциальная фотометрия
AR Кассиопеи в Тянь- Шаньской обсерватории ГАИШ МГУ с четырехканальным WBVR-электрофотометром 97
§ 4.3. Решение кривых блеска и определение фото¬
метрических элементов системы 99
§ 4.4. Оценка возраста системы и исследование природы ультрафиолетового избытка главной компоненты 110
§ 4.5. Исследование вращения эллиптической орбиты
AR Касиопеи и определение апсидального параметра главной компоненты 115
§ 4.6. Основные выводы по результатам исследования
AR Cas 118
ЗАКЛЮЧЕНИЕ 120
СПИСОК ЛИТЕРАТУРЫ 123
ПРИЛОЖЕНИЕ 133
1 ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ И ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЗАТМЕННЫХ СИСТЕМ С ЭЛЛИПТИЧЕСКИМИ ОРБИТАМИ НА ПРИМЕРЕ АНАЛИЗА КРИВОЙ БЛЕСКА RR РЫСИ 13
§ 1.1. Основные теоретические соотношения, определяющие скорость вращения эллиптической орбиты из- за приливной и вращательной деформации компонент и эффектов общей теории относительности 13
§ 1.2. Краткое описание итерационного метода дифференциальных поправок для решения кривых блеска систем с эксцентричными орбитами 21
§ 1.3. Оценка доверительных интервалов для фотометрических элементов, определенных из анализа фотоэлектрических кривых блеска RR Рыси 28
ГЛАВА II. РАЗРАБОТКА ЧЕТЫРЕХКАНАЛЬНОГО ЗВЕЗДНОГО WBVR- ЭЛЕКТРОФОТОМЕТРА 39
§ 2.1. Обоснование конструкции фотометра и постановка задачи 39
§ 2.2. Основные узлы и принцип работы четырехканального фотометра на основе полупрозрачных алюминиевых слоев:
а). Светоделительный блок 41
б ). Оптическая схема 44
в). Электрическая схема 47
а). Основные свойства дихроичных покрытий и
светоделительный блок фотометра 53
б). Оптическая схема на основе дихроичных светоделителей 60
в). Спектральные кривые чувствительности каналов 63
г). Оценка поляризационных эффектов 65
§ 2.4. Эффективность работы четырехканального электрофотометра как при индивидуальных, так и массовых, каталожных, измерениях звезд 67
ГЛАВА III. ВЫСОКОТОЧНАЯ WBVR - ЭЛЕКТРОФОТОМЕТРИЯ ЗАТМЕННОЙ ДВОЙНОЙ СИСТЕМЫ RR РЫСИ 73
§ 3.1. Краткая история иследований системы и постановка задачи 73
§ 3.2. Многоцветные фотоэлектрические наблюдения
RR Lyn в фотометрической системе WBVR 75
§ 3.3. Определение фотометрических элементов системы
итерационным методом дифференциальных поправок 80
§ 4.2. Абсолютная и дифференциальная фотометрия
AR Кассиопеи в Тянь- Шаньской обсерватории ГАИШ МГУ с четырехканальным WBVR-электрофотометром 97
§ 4.3. Решение кривых блеска и определение фото¬
метрических элементов системы 99
§ 4.4. Оценка возраста системы и исследование природы ультрафиолетового избытка главной компоненты 110
§ 4.5. Исследование вращения эллиптической орбиты
AR Касиопеи и определение апсидального параметра главной компоненты 115
§ 4.6. Основные выводы по результатам исследования
AR Cas 118
ЗАКЛЮЧЕНИЕ 120
СПИСОК ЛИТЕРАТУРЫ 123
ПРИЛОЖЕНИЕ 133
Трудно представить развитие современной астрофизики без открытия затменных двойных систем. Эти системы являются основным источником информации о количественных характеристиках звезд, составляющих звездную пару: массах, радиусах, светимостях, температурах и других данных, без которых невозможно построить цельную картину жизни звезд: их образование, развитие и конечные стадии эволюции. А без теории эволюции звезд нельзя судить об эволюции галактик, да и всей Вселенной в целом, поскольку звезды являются основными кирпичиками, их составляющими.
Хотя история переменных звезд, в том числе и затменных систем, уходит в далекие древние века (например, еще в IX - X веках арабы знали о переменности яркой звезды в Персея и присвоили ей сохранившееся до сих пор название Алголь), история исследования затменных систем началась, по- видимому, в конце XVIII века и это начало связывают с именами двух англичан - Эдварта Пиготта (1750-1807) и Джона Гудрайка (1764-1786), которые на основе систематических визуальных наблюдений в Персея открыли периодичность в изменениях блеска этой звезды и впервые выдвинули гипотезу о ее двойственности и затменной природе изменений ее блеска. Уже в конце XIX века предлагались первые алгоритмы и формулы, позволяющие получить размеры компонент систем типа Алголя с помощью анализа их кривых блеска. (Пикеринг, 1880) Однако общую теорию затменных переменных разработал, в основном, Рессел (1912 а, б). Эта теория, служившая в течение более полувека для практических работ по решению кривых блеска, модифицировалась и уточнялась во многих работах (Фетлаар, 1923; Пиотровский, 1937, 1948; Копал 1946, 1950, 1959; Ирвин, 1947, 1962; Рессел и Мерилл 1952; Серковский, 1961). В нашей стране изучение затменных систем имеет глубокие корни благодаря, в основном, многолетней и плодотворной деятельности в этой области выдающихся советских астрофизиков: В.П.Цесевича, С.М.Блажко, В.А.Крата, Д.Я.Мартынова, А.М. Черепащука. Ими были основаны школы исследователей затменных звезд в Одесской астрономической обсерватории (ОАО), в Астрономической обсерватории им. В.П. Энгельгардта (АОЭ), Государственном астрономическом институте им. П.К.Штернберга (ГАИШ), успешно работающие до настоящего времени. Итоги работы этих школ изложены в фундаментальных статьях и монографиях (Зверев и др., 1947; Мартынов, 1939, 1948, 1981; Цесевич, 1971; Шульберг, 1971; Гончарский, Черепащук и Ягола, 1978, 1985; Халиуллин, 1997 и др.).
В 60-х годах использование ЭВМ привело к коренной ломке старых классических методов анализа кривых блеска двойных звезд, основанных на вычислениях фотометрических фаз затмения с помощью предварительно вычисленных обширных таблиц. Первые попытки применения ЭВМ были тесно связаны с традиционными схемами вычисления, то есть это были те же алгоритмы, но введенные в вычислительную машину (Табачник и Шульберг, 1966; Табачник, 1971). С появлением более мощных вычислительных средств исследователи все дальше отходили от классических методов (Горак, 1968; Лавров, 1978). Для затменных систем с сильно деформированными компонентами методика вычисления фотометрических элементов в модели трехосного эллипсоида была предложена Вудом (1971), а в модели Роша - Хиллом и Хатчингсоном (1970); Вилсоном и Девинеем (1971); Бочкаревым, Карицкой и Шакурой (1975, 1979); Балог, Гончарским и Черепащуком (1981а,б). Для систем с протяженными атмосферами принципиально новый метод с использованием мощных ЭВМ впервые разработан Черепащуком (1974). Для решения кривых блеска затменных систем с эксцентричными орбитами Халиуллиной и Халиуллиным (1984) был разработан
В настоящее время известно более 4000 затменных переменных (Холопов и др., 1990, ОКПЗ) и число их постоянно растет. Следует отметить тот факт, что они представляют единственный широкий класс объектов среди двойных звезд, которые могут быть открыты на больших расстояниях не только в нашей Галактике, но и в других галактиках. В то же время, например, спектрально-двойные звезды трудно обнаружить на расстояниях больше 1 2 кпс от Солнца, а для визуально-двойных этот предел составляет всего 100 пс (Копал, 1950). В качестве компонент затменных двойных систем выступают звезды, по-существу, всех известных типов: от звезд главной последовательности различных спектральных классов до пекулярных объектов, находящихся на конечной стадии своей эволюции (гиганты и сверхгиганты, нейтронные звезды и белые карлики, звезды типа Вольфа-Райе и кандидаты в “черные дыры” и т. д.). Поэтому любой астрофизик, интересующийся проблемой того или другого класса объектов, может, как правило, найти затменную систему, содержащую такой объект, и досконально исследовать ее, используя преимущества, предоставляемые затменным характером звезды.
Почему же в нашей диссертации были выбраны выбраны две системы RR Рыси и AR Кассиопеи из многих других?
угловой скоростью а, зависящей от p(r). Поэтому измеряя а, мы можем оценить p(r). Правда, оцениваются на сегодняшний день только квадрупольные моменты от этого распределения, называемые апсидальными параметрами второго порядка k2. Кроме того, вращение линии апсид происходит также за счет эффектов общей теории относительности (Леви- Сивита, 1937; Руджобинг, 1959), динамического влияния третьего тела (Мартынов, 1948) и других. При определении апсидального параметра k2все эти эффекты необходимо учитывать.
Теория вращения линии апсид была развита в работах Рессела (1928), Чандрасекхара (1933), Коулинга (1938), Стерна (1939), Мартынова (1948), Копала (1978) и в современных обозначениях популярно изложена в работе Халиуллина (1997 а). Основные формулы, используемые в нашей работе, приведены в параграфе 1.1.
К настоящему времени исследовано около 50 затменных систем с эллиптическими орбитами на предмет измерения скорости апсидального вращения их орбит и определения параметра k2 их компонент (Кларет и Гименез, 1993; Халиуллин, 1997 а, б; Петрова и Орлов, 1999). Сделаны важные астрофизические выводы на этой основе о соответствии наблюдаемых параметров k2 современным теоретическим моделям для большинства типов звезд. Однако есть ряд систем, для которых наблюдаются значительные несоответствия между теорией и наблюдениями. Особое место в этом ряду занимают AR Cas и RR Рыси, которым посвящено много работ, как фотометрических, так и спектроскопических, и обе были открыты как двойные системы еще в начале ХХ века. Однако, несмотря на почти столетний ряд исследований этих двух ярких звезд Северного неба (V = 4m.89 и 5m.54 для AR Cas и RR Lyn, соответственно), окончательные модели этих систем не были построены и данные разных авторов часто значительно противоречат друг другу.
С целью выяснения основных причин несоответствия выводов и результатов работ разных авторов, исследовавших эти двойные системы, мы в Главе I провели анализ кривой блеска RR Рыси с целью оценки доверительных интервалов для фотометрических элементов, определенных из решения фотоэлектрических кривых блеска этой системы. Этот анализ показал, что точности фотоэлектрических наблюдений с cobs~ 0m010 не достаточно для определения основных фотометрических элементов (r1; r2; ш; e; L1 и L2). Вариации этих элементов даже в пределах ±20% (!) удовлетворяют кривой блеска с точностью ±0m.005! Усреднение и накопление разнообразных данных для повышения точности сводной кривой блеска плохо решают задачу как из-за большого и очень "неудобного" орбитального периода (Р=9а95), так и заметных ошибок редукции (~0Ш.005) разных данных, полученных в разных фотометрических системах в разные периоды времени. Проблема повышения точности наблюдений для второй выбранной нами звезды, AR Cas, стоит не менее остро, поскольку глубины минимумов для этой системы составляют лишь 0m.10 и 0m.03 для MinI и MinII, соответственно. Поэтому для решения задачи построения непротиворечивой системы физических и геометрических характеристик системы AR Cas и RR Рыси, поставленной перед автором диссертации, необходимо было повысить точность фотоэлектрических измерений до cobs<0m003 - 0m004.
изготовленного автором диссертации совместно с В.Г. Корниловым. Поэтому в Главе II диссертации приведены конструктивные особенности основных узлов этого фотометра. Именно, благодаря наблюдениям в лучшие астроклиматические ночи и использованию четырехканального фотометра и эффективного итерационного метода анализа кривых блеска нам удалось решить основную задачу и впервые построить непротиворечивую модель систем AR Cas и RR Lyn.
На защиту выносятся следующие основные результаты
1. Разработка конструкции и иследование четырехканального звездного WBVR-электрофотометра, изготовленного как на основе светоделителей с полупрозрачными алюминиевыми слоями, так и на базе дихроичных светоделителей.
С участием автора диссертации коллективом сотрудников ГАИШ на этом фотометре проведены абсолютные фотометрические измерения всех звезд Северного неба (до 5 = -16 ) ярче 7m2 и опубликован Каталог WBVR величин 13 586 звезд и кратных систем. Точность этого каталога для абсолютных наземных измерений уникальна и в полосе V составляет примерно 0.m005.
2. Высокоточные многоцветные фотоэлектрические измерения (oobs<0m.004) затменных двойных систем RR Рыси и AR Кассиопеи в фотометрической системе WBVR.
3. Фотометрические и абсолютные параметры систем RR Рыси и AR Кассиопеи, найденные итерационным методом дифференциальных поправок из решения полученных автором кривых блеска.
Это заключение следует из анализа эффектов бланкетирования в полосах WBVR и находится в качественном и количественном согласии с результатами спектроскопических исследований этой системы. Анализ полученных в диссертации физических характеристик RR Рыси свидетельствует, что эффекты металличности связаны, по-видимому, лишь с поверхностными слоями звезд-компонент, а их ядра имеют нормальный химсостав.
5. Существенное уточнение периода вращения линии апсид эллиптической орбиты AR Кассиопеи (Uobs = 1100 ± 160) лет и первое определение апсидального параметра ее главной компоненты: lg k2,1obs= - 2.41 ± 0.08, который оказался в близком соответствии с современными эволюционными моделями звезд.
Перечисленные пункты определяют также научную новизну результатов, полученных в диссертации.
По теме диссертации опубликовано пять работ. Общий вклад авторов в совместных работах мы считаем равным, однако естественно, что конкретные виды работ (постановка задачи, разработка аппаратуры, наблюдения, обработка данных, анализ результатов и их интерпретация, публикации и др.), как правило, выполняются авторами не в равной степени. В список результатов, вынесенных на защиту, включены те результаты и выводы, в которых вклад автора диссертации был основным или, по крайней мере, равным вкладу других соавторов.
Личный вклад автора диссертации в совместных работах можно охарактеризовать следующим образом:
В совместных работах с В.Г.Корниловым по конструкции и изготовлению четырехканального звездного электрофотометра также считаю общий вклад равным, хотя я, в основном, работал по оптической и механической части фотометра, а В.Г.Корнилов - по электронной.
Хотя история переменных звезд, в том числе и затменных систем, уходит в далекие древние века (например, еще в IX - X веках арабы знали о переменности яркой звезды в Персея и присвоили ей сохранившееся до сих пор название Алголь), история исследования затменных систем началась, по- видимому, в конце XVIII века и это начало связывают с именами двух англичан - Эдварта Пиготта (1750-1807) и Джона Гудрайка (1764-1786), которые на основе систематических визуальных наблюдений в Персея открыли периодичность в изменениях блеска этой звезды и впервые выдвинули гипотезу о ее двойственности и затменной природе изменений ее блеска. Уже в конце XIX века предлагались первые алгоритмы и формулы, позволяющие получить размеры компонент систем типа Алголя с помощью анализа их кривых блеска. (Пикеринг, 1880) Однако общую теорию затменных переменных разработал, в основном, Рессел (1912 а, б). Эта теория, служившая в течение более полувека для практических работ по решению кривых блеска, модифицировалась и уточнялась во многих работах (Фетлаар, 1923; Пиотровский, 1937, 1948; Копал 1946, 1950, 1959; Ирвин, 1947, 1962; Рессел и Мерилл 1952; Серковский, 1961). В нашей стране изучение затменных систем имеет глубокие корни благодаря, в основном, многолетней и плодотворной деятельности в этой области выдающихся советских астрофизиков: В.П.Цесевича, С.М.Блажко, В.А.Крата, Д.Я.Мартынова, А.М. Черепащука. Ими были основаны школы исследователей затменных звезд в Одесской астрономической обсерватории (ОАО), в Астрономической обсерватории им. В.П. Энгельгардта (АОЭ), Государственном астрономическом институте им. П.К.Штернберга (ГАИШ), успешно работающие до настоящего времени. Итоги работы этих школ изложены в фундаментальных статьях и монографиях (Зверев и др., 1947; Мартынов, 1939, 1948, 1981; Цесевич, 1971; Шульберг, 1971; Гончарский, Черепащук и Ягола, 1978, 1985; Халиуллин, 1997 и др.).
В 60-х годах использование ЭВМ привело к коренной ломке старых классических методов анализа кривых блеска двойных звезд, основанных на вычислениях фотометрических фаз затмения с помощью предварительно вычисленных обширных таблиц. Первые попытки применения ЭВМ были тесно связаны с традиционными схемами вычисления, то есть это были те же алгоритмы, но введенные в вычислительную машину (Табачник и Шульберг, 1966; Табачник, 1971). С появлением более мощных вычислительных средств исследователи все дальше отходили от классических методов (Горак, 1968; Лавров, 1978). Для затменных систем с сильно деформированными компонентами методика вычисления фотометрических элементов в модели трехосного эллипсоида была предложена Вудом (1971), а в модели Роша - Хиллом и Хатчингсоном (1970); Вилсоном и Девинеем (1971); Бочкаревым, Карицкой и Шакурой (1975, 1979); Балог, Гончарским и Черепащуком (1981а,б). Для систем с протяженными атмосферами принципиально новый метод с использованием мощных ЭВМ впервые разработан Черепащуком (1974). Для решения кривых блеска затменных систем с эксцентричными орбитами Халиуллиной и Халиуллиным (1984) был разработан
В настоящее время известно более 4000 затменных переменных (Холопов и др., 1990, ОКПЗ) и число их постоянно растет. Следует отметить тот факт, что они представляют единственный широкий класс объектов среди двойных звезд, которые могут быть открыты на больших расстояниях не только в нашей Галактике, но и в других галактиках. В то же время, например, спектрально-двойные звезды трудно обнаружить на расстояниях больше 1 2 кпс от Солнца, а для визуально-двойных этот предел составляет всего 100 пс (Копал, 1950). В качестве компонент затменных двойных систем выступают звезды, по-существу, всех известных типов: от звезд главной последовательности различных спектральных классов до пекулярных объектов, находящихся на конечной стадии своей эволюции (гиганты и сверхгиганты, нейтронные звезды и белые карлики, звезды типа Вольфа-Райе и кандидаты в “черные дыры” и т. д.). Поэтому любой астрофизик, интересующийся проблемой того или другого класса объектов, может, как правило, найти затменную систему, содержащую такой объект, и досконально исследовать ее, используя преимущества, предоставляемые затменным характером звезды.
Почему же в нашей диссертации были выбраны выбраны две системы RR Рыси и AR Кассиопеи из многих других?
угловой скоростью а, зависящей от p(r). Поэтому измеряя а, мы можем оценить p(r). Правда, оцениваются на сегодняшний день только квадрупольные моменты от этого распределения, называемые апсидальными параметрами второго порядка k2. Кроме того, вращение линии апсид происходит также за счет эффектов общей теории относительности (Леви- Сивита, 1937; Руджобинг, 1959), динамического влияния третьего тела (Мартынов, 1948) и других. При определении апсидального параметра k2все эти эффекты необходимо учитывать.
Теория вращения линии апсид была развита в работах Рессела (1928), Чандрасекхара (1933), Коулинга (1938), Стерна (1939), Мартынова (1948), Копала (1978) и в современных обозначениях популярно изложена в работе Халиуллина (1997 а). Основные формулы, используемые в нашей работе, приведены в параграфе 1.1.
К настоящему времени исследовано около 50 затменных систем с эллиптическими орбитами на предмет измерения скорости апсидального вращения их орбит и определения параметра k2 их компонент (Кларет и Гименез, 1993; Халиуллин, 1997 а, б; Петрова и Орлов, 1999). Сделаны важные астрофизические выводы на этой основе о соответствии наблюдаемых параметров k2 современным теоретическим моделям для большинства типов звезд. Однако есть ряд систем, для которых наблюдаются значительные несоответствия между теорией и наблюдениями. Особое место в этом ряду занимают AR Cas и RR Рыси, которым посвящено много работ, как фотометрических, так и спектроскопических, и обе были открыты как двойные системы еще в начале ХХ века. Однако, несмотря на почти столетний ряд исследований этих двух ярких звезд Северного неба (V = 4m.89 и 5m.54 для AR Cas и RR Lyn, соответственно), окончательные модели этих систем не были построены и данные разных авторов часто значительно противоречат друг другу.
С целью выяснения основных причин несоответствия выводов и результатов работ разных авторов, исследовавших эти двойные системы, мы в Главе I провели анализ кривой блеска RR Рыси с целью оценки доверительных интервалов для фотометрических элементов, определенных из решения фотоэлектрических кривых блеска этой системы. Этот анализ показал, что точности фотоэлектрических наблюдений с cobs~ 0m010 не достаточно для определения основных фотометрических элементов (r1; r2; ш; e; L1 и L2). Вариации этих элементов даже в пределах ±20% (!) удовлетворяют кривой блеска с точностью ±0m.005! Усреднение и накопление разнообразных данных для повышения точности сводной кривой блеска плохо решают задачу как из-за большого и очень "неудобного" орбитального периода (Р=9а95), так и заметных ошибок редукции (~0Ш.005) разных данных, полученных в разных фотометрических системах в разные периоды времени. Проблема повышения точности наблюдений для второй выбранной нами звезды, AR Cas, стоит не менее остро, поскольку глубины минимумов для этой системы составляют лишь 0m.10 и 0m.03 для MinI и MinII, соответственно. Поэтому для решения задачи построения непротиворечивой системы физических и геометрических характеристик системы AR Cas и RR Рыси, поставленной перед автором диссертации, необходимо было повысить точность фотоэлектрических измерений до cobs<0m003 - 0m004.
изготовленного автором диссертации совместно с В.Г. Корниловым. Поэтому в Главе II диссертации приведены конструктивные особенности основных узлов этого фотометра. Именно, благодаря наблюдениям в лучшие астроклиматические ночи и использованию четырехканального фотометра и эффективного итерационного метода анализа кривых блеска нам удалось решить основную задачу и впервые построить непротиворечивую модель систем AR Cas и RR Lyn.
На защиту выносятся следующие основные результаты
1. Разработка конструкции и иследование четырехканального звездного WBVR-электрофотометра, изготовленного как на основе светоделителей с полупрозрачными алюминиевыми слоями, так и на базе дихроичных светоделителей.
С участием автора диссертации коллективом сотрудников ГАИШ на этом фотометре проведены абсолютные фотометрические измерения всех звезд Северного неба (до 5 = -16 ) ярче 7m2 и опубликован Каталог WBVR величин 13 586 звезд и кратных систем. Точность этого каталога для абсолютных наземных измерений уникальна и в полосе V составляет примерно 0.m005.
2. Высокоточные многоцветные фотоэлектрические измерения (oobs<0m.004) затменных двойных систем RR Рыси и AR Кассиопеи в фотометрической системе WBVR.
3. Фотометрические и абсолютные параметры систем RR Рыси и AR Кассиопеи, найденные итерационным методом дифференциальных поправок из решения полученных автором кривых блеска.
Это заключение следует из анализа эффектов бланкетирования в полосах WBVR и находится в качественном и количественном согласии с результатами спектроскопических исследований этой системы. Анализ полученных в диссертации физических характеристик RR Рыси свидетельствует, что эффекты металличности связаны, по-видимому, лишь с поверхностными слоями звезд-компонент, а их ядра имеют нормальный химсостав.
5. Существенное уточнение периода вращения линии апсид эллиптической орбиты AR Кассиопеи (Uobs = 1100 ± 160) лет и первое определение апсидального параметра ее главной компоненты: lg k2,1obs= - 2.41 ± 0.08, который оказался в близком соответствии с современными эволюционными моделями звезд.
Перечисленные пункты определяют также научную новизну результатов, полученных в диссертации.
По теме диссертации опубликовано пять работ. Общий вклад авторов в совместных работах мы считаем равным, однако естественно, что конкретные виды работ (постановка задачи, разработка аппаратуры, наблюдения, обработка данных, анализ результатов и их интерпретация, публикации и др.), как правило, выполняются авторами не в равной степени. В список результатов, вынесенных на защиту, включены те результаты и выводы, в которых вклад автора диссертации был основным или, по крайней мере, равным вкладу других соавторов.
Личный вклад автора диссертации в совместных работах можно охарактеризовать следующим образом:
В совместных работах с В.Г.Корниловым по конструкции и изготовлению четырехканального звездного электрофотометра также считаю общий вклад равным, хотя я, в основном, работал по оптической и механической части фотометра, а В.Г.Корнилов - по электронной.
1. На основе численного эксперимента с использованием современных ЭВМ показано, что обычная точность фотоэлектрических измерений с cobs« 0m.010 недостаточна для определения фотометрических и геометрических параметров двойной системы RR Lyn, имеющей кривую блеска с частными затмениями: MinI = 0m.37 , MinII = 0m.24, в полосе V. Однозначную модель этой двойной звезды можно построить лишь при cobs<0m003.
2. С целью повышения точности и эффективности фотометрических измерений разработан и изготовлен четырехканальный WBVR электрофотометр с разделением света между каналами с помощью полупрозрачных алюминиевых слоев. Конструкция прибора позволяет сравнительно легко заменить используемый светоделительный блок на светоделительную систему на основе дихроичных многослойных диэлектрических покрытий, то есть, таких тонкопленочных структур, которые в некоторой спектральной области отражают практически все излучение с длиной волны, короче заданной, и пропускают все остальное излучение. Кроме наблюдений затменных двойных звезд, коллективом сотрудников лаборатории астрофотометрии ГАИШ МГУ с участием автора диссертации на этом фотометре проведены абсолютные фотометрические измерения всех звезд Северного неба (до 5 = -16°) ярче 7m2 и опубликован Каталог WBVR величин 13586 звезд и кратных систем. Точность этого каталога для абсолютных наземных измерений уникальна и в полосе V составляет примерно 0m.005.
3. В фотометрической системе WBVR выполнены высокоточные (cobs« 0.m003) фотоэлектрические измерения и построены кривые блеска затменной системы RR Lyn. Из анализа этих кривых итерационным методом дифференциальных поправок определены фотометрические элементы, которые позволили получить непротиворечивую систему геометрических и физических характеристик обеих компонент и их эволюционный статус; найден возраст системы: t = (1.08 ± 0.15)-10 9лет. Наблюдения во всех фильтрах удовлетворительно описываются единой геометрией (r1j2, i, eи го).
Из анализа эффектов бланкетирования в полосах W, B, V и R сделан вывод, что химический состав атмосфер обеих компонент этой системы пекулярен: главная компонента показывает избыток тяжелых элементов ([Fe/H] I= 0.31 ± 0.08), а вторичная - их дефицит ( [Fe/H] II= - 0.24 ± 0.06). Этот вывод находится в качественном и количественном согласии с более ранними результатами спектроскопического исследования RR Lyn, проведенного в 1995 г. Любимковым и Рачковской.
Анализ полученных в работе физических характеристик RR Lyn свидетельствует, что эффекты металличности, по-видимому, связаны лишь с поверхностными слоями звезд-компонент, а их ядра имеют нормальный химический состав.
4. В фотометрической системе WBVR на 4-х канальном автоматизированном электрофотометре в Тянь-Шаньской высокогорной обсерватории Астрономического института им. П.К.Штернберга выполнены высокоточные (cobs~ 0m004) измерения блеска затменной системы AR Cas в моменты избранных фаз до входа и после выхода из затмений и в серединах минимумов. Анализ результатов этих измерений совместно с другими опубликованными данными позволил впервые получить непротиворечивую систему физических и геометрических параметров этой звезды и эволюционный статуc ее компонент: t = (60 ± 3)-106лет. Определен период вращения линии апсид: Uobs= 1100 ± 160 лет, oobs= 0°.327 ± 0°.049 год 1, а также апсидальный параметр главной компоненты: lg kД = -2.41 ± 0.08, который оказался в близком соответствии с современными эволюционными моделями звезд. Обнаружен ультрафиолетовый избыток излучения главной компоненты: A(U-B) = -0m12, A(B-V) = -0m06, который, возможно, связан с дефицитом металлов в атмосфере этой звезды.
Основные результаты диссертации опубликованы в следующих статьях:
1. Корнилов В.Г., Крылов А.В., 1990, Четырехканальный звездный
электрофотометр для измерения ярких звезд, Астрономический журнал, 67, 173-181, 1990
2. Корнилов В.Г., Волков И.М., ... Крылов А.В., и др., 1991, Каталог WBVR- величин ярких звезд северного неба, Труды гос. астрон ин-та им. П.К.Штернберга, том LXIII, 3-399, 1991.
3. Корнилов В.Г., Крылов А.В., Звездный четырехканальный электрофотометр с дихроичными светоделителями, в сборнике научных трудов "Ядерная физика, физика космических излучений, астрономия", изд- во МГУ, стр. 203-209, 1994.
4. Халиуллин Х.Ф., Халиуллина А.И., Крылов А.В., Высокоточная WBVR- электрофотометрия затменной системы RR Рыси, Астрономический журнал, 78, 1014-1024, 2001.
5. Крылов А.В., Моссаковская Л.В., Халиуллин Х.Ф., Халиуллина А.И., Вращение линии апсид и физические параметры затменной двойной системы AR Cas, Астрономический журнал, 80, 54-64, 2003
2. С целью повышения точности и эффективности фотометрических измерений разработан и изготовлен четырехканальный WBVR электрофотометр с разделением света между каналами с помощью полупрозрачных алюминиевых слоев. Конструкция прибора позволяет сравнительно легко заменить используемый светоделительный блок на светоделительную систему на основе дихроичных многослойных диэлектрических покрытий, то есть, таких тонкопленочных структур, которые в некоторой спектральной области отражают практически все излучение с длиной волны, короче заданной, и пропускают все остальное излучение. Кроме наблюдений затменных двойных звезд, коллективом сотрудников лаборатории астрофотометрии ГАИШ МГУ с участием автора диссертации на этом фотометре проведены абсолютные фотометрические измерения всех звезд Северного неба (до 5 = -16°) ярче 7m2 и опубликован Каталог WBVR величин 13586 звезд и кратных систем. Точность этого каталога для абсолютных наземных измерений уникальна и в полосе V составляет примерно 0m.005.
3. В фотометрической системе WBVR выполнены высокоточные (cobs« 0.m003) фотоэлектрические измерения и построены кривые блеска затменной системы RR Lyn. Из анализа этих кривых итерационным методом дифференциальных поправок определены фотометрические элементы, которые позволили получить непротиворечивую систему геометрических и физических характеристик обеих компонент и их эволюционный статус; найден возраст системы: t = (1.08 ± 0.15)-10 9лет. Наблюдения во всех фильтрах удовлетворительно описываются единой геометрией (r1j2, i, eи го).
Из анализа эффектов бланкетирования в полосах W, B, V и R сделан вывод, что химический состав атмосфер обеих компонент этой системы пекулярен: главная компонента показывает избыток тяжелых элементов ([Fe/H] I= 0.31 ± 0.08), а вторичная - их дефицит ( [Fe/H] II= - 0.24 ± 0.06). Этот вывод находится в качественном и количественном согласии с более ранними результатами спектроскопического исследования RR Lyn, проведенного в 1995 г. Любимковым и Рачковской.
Анализ полученных в работе физических характеристик RR Lyn свидетельствует, что эффекты металличности, по-видимому, связаны лишь с поверхностными слоями звезд-компонент, а их ядра имеют нормальный химический состав.
4. В фотометрической системе WBVR на 4-х канальном автоматизированном электрофотометре в Тянь-Шаньской высокогорной обсерватории Астрономического института им. П.К.Штернберга выполнены высокоточные (cobs~ 0m004) измерения блеска затменной системы AR Cas в моменты избранных фаз до входа и после выхода из затмений и в серединах минимумов. Анализ результатов этих измерений совместно с другими опубликованными данными позволил впервые получить непротиворечивую систему физических и геометрических параметров этой звезды и эволюционный статуc ее компонент: t = (60 ± 3)-106лет. Определен период вращения линии апсид: Uobs= 1100 ± 160 лет, oobs= 0°.327 ± 0°.049 год 1, а также апсидальный параметр главной компоненты: lg kД = -2.41 ± 0.08, который оказался в близком соответствии с современными эволюционными моделями звезд. Обнаружен ультрафиолетовый избыток излучения главной компоненты: A(U-B) = -0m12, A(B-V) = -0m06, который, возможно, связан с дефицитом металлов в атмосфере этой звезды.
Основные результаты диссертации опубликованы в следующих статьях:
1. Корнилов В.Г., Крылов А.В., 1990, Четырехканальный звездный
электрофотометр для измерения ярких звезд, Астрономический журнал, 67, 173-181, 1990
2. Корнилов В.Г., Волков И.М., ... Крылов А.В., и др., 1991, Каталог WBVR- величин ярких звезд северного неба, Труды гос. астрон ин-та им. П.К.Штернберга, том LXIII, 3-399, 1991.
3. Корнилов В.Г., Крылов А.В., Звездный четырехканальный электрофотометр с дихроичными светоделителями, в сборнике научных трудов "Ядерная физика, физика космических излучений, астрономия", изд- во МГУ, стр. 203-209, 1994.
4. Халиуллин Х.Ф., Халиуллина А.И., Крылов А.В., Высокоточная WBVR- электрофотометрия затменной системы RR Рыси, Астрономический журнал, 78, 1014-1024, 2001.
5. Крылов А.В., Моссаковская Л.В., Халиуллин Х.Ф., Халиуллина А.И., Вращение линии апсид и физические параметры затменной двойной системы AR Cas, Астрономический журнал, 80, 54-64, 2003



