КВАЗИРЕЗОНАНСНЫЕ ИМПУЛЬСНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ СИСТЕМ ТОЧНОГО ЭЛЕКТРОПРИВОДА ПОСТОЯННОГО ТОКА
|
ВВЕДЕНИЕ 4
РАЗДЕЛ 1. ЦЕЛЕСООБРАЗНОСТЬ ПРИМЕНЕНИЯ КВАЗИРЕЗОНАНСНЫХ
ИМПУЛЬСНЫХ ПРЕОБРАЗОВАТЕЛЕЙ В ТОЧНОМ
ЭЛЕКТРОПРИВОДЕ ПОСТОЯННОГО ТОКА 11
1.1. Пути улучшения характеристик импульсных источников питания 11
1.2. Особенности квазирезонансного импульсного преобразователя 15
1.3. Особенности аппаратуры точной магнитной записи 17
Выводы к разделу 1 22
РАЗДЕЛ 2. АНАЛИЗ ЭЛЕКТРОМАГНИТНЫХ ПРОЦЕССОВ В
КВАЗИРЕЗОНАНСНОМ ИМПУЛЬСНОМ ПРЕОБРАЗОВАТЕЛЕ
С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА 23
2.1. Особенности коммутации квазирезонансного импульсного
преобразователя, переключаемого при нулевом токе, на противо-э.д.с .23
2.2. Переходные и установившиеся процессы в преобразователе 25
2.3. Пульсации выходного тока преобразователя 33
2.4. Моделирование процессов в преобразователе 41
2.5. Спектр потребляемого тока 47
2.6. Экспериментальная проверка результатов анализа и моделирования 50
Выводы к разделу 2 56
РАЗДЕЛ 3. СТАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ КВАЗИРЕЗОНАНСНОГО ИМПУЛЬСНОГО ПРЕОБРАЗОВАТЕЛЯ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА 58
3.1. Влияние квазирезонансного импульсного преобразователя на механические характеристики двигателя постоянного тока 59
3.2. Влияние квазирезонансного импульсного преобразователя на величину
пульсаций скорости двигателя постоянного тока 68
Выводы к разделу 3 72
РАЗДЕЛ 4. ОПТИМИЗАЦИЯ КВАЗИРЕЗОНАНСНОГО ИМПУЛЬСНОГО ПРЕОБРАЗОВАТЕЛЯ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА... 74
4.1. Особенности оптимизации преобразователя 74
4.2. Оптимизация системы управления для позиционирования 75
4.3. Оптимизация системы управления преобразователя для разгона 90
Выводы к разделу 4 99
РАЗДЕЛ 5. РЕВЕРСИВНЫЙ КВАЗИРЕЗОНАНСНЫЙ ИМПУЛЬСНЫЙ
ПРЕОБРАЗОВАТЕЛЬ С ЦИФРОВОЙ СИСТЕМОЙ УПРАВЛЕНИЯ 101
5.1. Требование к преобразователю 101
5.2. Силовая часть преобразователя 102
5.3. Система управления преобразователя 107
5.3.1. Система управления для позиционирования 109
5.3.2. Система управления для стабилизации скорости. 118
Выводы к разделу 5 126
ЗАКЛЮЧЕНИЕ 128
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 130
ПРИЛОЖЕНИЕ
РАЗДЕЛ 1. ЦЕЛЕСООБРАЗНОСТЬ ПРИМЕНЕНИЯ КВАЗИРЕЗОНАНСНЫХ
ИМПУЛЬСНЫХ ПРЕОБРАЗОВАТЕЛЕЙ В ТОЧНОМ
ЭЛЕКТРОПРИВОДЕ ПОСТОЯННОГО ТОКА 11
1.1. Пути улучшения характеристик импульсных источников питания 11
1.2. Особенности квазирезонансного импульсного преобразователя 15
1.3. Особенности аппаратуры точной магнитной записи 17
Выводы к разделу 1 22
РАЗДЕЛ 2. АНАЛИЗ ЭЛЕКТРОМАГНИТНЫХ ПРОЦЕССОВ В
КВАЗИРЕЗОНАНСНОМ ИМПУЛЬСНОМ ПРЕОБРАЗОВАТЕЛЕ
С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА 23
2.1. Особенности коммутации квазирезонансного импульсного
преобразователя, переключаемого при нулевом токе, на противо-э.д.с .23
2.2. Переходные и установившиеся процессы в преобразователе 25
2.3. Пульсации выходного тока преобразователя 33
2.4. Моделирование процессов в преобразователе 41
2.5. Спектр потребляемого тока 47
2.6. Экспериментальная проверка результатов анализа и моделирования 50
Выводы к разделу 2 56
РАЗДЕЛ 3. СТАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ КВАЗИРЕЗОНАНСНОГО ИМПУЛЬСНОГО ПРЕОБРАЗОВАТЕЛЯ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА 58
3.1. Влияние квазирезонансного импульсного преобразователя на механические характеристики двигателя постоянного тока 59
3.2. Влияние квазирезонансного импульсного преобразователя на величину
пульсаций скорости двигателя постоянного тока 68
Выводы к разделу 3 72
РАЗДЕЛ 4. ОПТИМИЗАЦИЯ КВАЗИРЕЗОНАНСНОГО ИМПУЛЬСНОГО ПРЕОБРАЗОВАТЕЛЯ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА... 74
4.1. Особенности оптимизации преобразователя 74
4.2. Оптимизация системы управления для позиционирования 75
4.3. Оптимизация системы управления преобразователя для разгона 90
Выводы к разделу 4 99
РАЗДЕЛ 5. РЕВЕРСИВНЫЙ КВАЗИРЕЗОНАНСНЫЙ ИМПУЛЬСНЫЙ
ПРЕОБРАЗОВАТЕЛЬ С ЦИФРОВОЙ СИСТЕМОЙ УПРАВЛЕНИЯ 101
5.1. Требование к преобразователю 101
5.2. Силовая часть преобразователя 102
5.3. Система управления преобразователя 107
5.3.1. Система управления для позиционирования 109
5.3.2. Система управления для стабилизации скорости. 118
Выводы к разделу 5 126
ЗАКЛЮЧЕНИЕ 128
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 130
ПРИЛОЖЕНИЕ
Современное состояние энергосберегающих технологий в значительной мере определяется уровнем развития силовой электроники, которая создает эффективные предпосылки для управления параметрами электроэнергии с целью ее экономного использования.
Во многих электронных устройствах преобразователи для питания электродвигателей являются звеном со значительным энергопотреблением по сравнению с остальными цепями. В последнее время происходит резкий рост объемов выпуска и улучшение качества силовых полупроводниковых приборов с высокими статическими и динамическими характеристиками, что позволяет создать новое поколение импульсных преобразователей электроэнергии.
Настоящая диссертация посвящена разработке импульсных источников питания электродвигателей с улучшенными технико-экономическими характеристиками и экспериментальной проверке полученных результатов на примерах проектирования новых образцов источников питания для точного электропривода постоянного тока. Практическая цель диссертации направлена на внедрение разработанной теории и практических результатов в учебный процесс и в практику организаций, занимающихся исследованием и разработкой источников питания для двигателей постоянного тока. Несмотря на то, что указанным вопросам, традиционно, уделяется много внимания со стороны исследователей, инженеров-проектировщиков, проблема создания надёжных экономных и малогабаритных источников питания, электромагнитно совместимых с сетью, по-прежнему остаётся актуальной. Этой проблеме посвятили свои труды известные специалисты силовой электроники: А. К. Шидловский, Т. А. Глазенко, И. В. Волков, В. С. Руденко, А. И. Денисов, В. Н. Исаков, К. А. Липковский, Э. М. Чехет, Н. С. Комаров, В. П. Шипилло, В. А. Лабунцов, О. Г. Булатов, А. Д. Поздеев, В. Я. Жуйков и др.
В немалой степени существованию вышеуказанной проблемы способствует несовершенство методов проектирования импульсных систем питания. Известные методы не всегда с достаточной точностью учитывают влияние дискретной нелинейности импульсных систем на характер динамических процессов.
Актуальность темы. Изначально источники питания электродвигателей выполнялись на основе лишь непрерывного регулирования, поэтому расчёт их динамических характеристик не был связан с принципиальными трудностями. Основу методов их расчёта составляла классическая теория управления и регулирования [13, 14, 36, 49]. Непрерывные (линейные) источники питания разрабатываются и в настоящее время, однако, диапазон их применения постоянно сужается из-за невысоких технико-экономических характеристик.
Уже сравнительно давно в качестве источников питания для электродвигателей широко используются импульсные преобразователи, в основном на базе широтно-импульсной модуляции (ШИМ). Эти преобразователи имеют высокий коэффициент полезного действия (КПД) и хорошие массогабаритные показатели, но в то же время они генерируют в эфир и питающую сеть значительный уровень электромагнитных помех.
В настоящее время, при разработке источников питания электропривода, вопросы качественной стабилизации скорости, электромагнитной совместимости с питающей сетью решаются комплексно на основании новейших достижений технологии производства силовых полупроводниковых приборов и микросхемотехники.
Современный уровень элементной базы силовой электроники - мощных полностью управляемых полупроводниковых приборов, магнитных материалов, конденсаторов - позволяет разрабатывать малогабаритные и надежные ключи в интегральном исполнении, работающие в мегагерцовом частотном диапазоне, когда в качестве фильтрующих цепей выступают паразитные параметры схемы.
Реализация возможностей современной элементной базы, с целью достижения граничных характеристик источников питания электродвигателей, связано с глубоким изучением процессов, протекающих в их энергетических и информационных каналах с учетом специфики режимов энергопреобразования, управления. В частности, на высоких частотах растет влияние помех, а также параметров силовых приборов и фильтров на динамические процессы в преобразователе, что заставляет искать новые принципы построения ключевых элементов и цепей обратной связи.
В последнее десятилетие в стадии интенсивных исследований находятся ключевые элементы на основе квазирезонанса, переключение которых происходит при нулевом токе или же при нулевом напряжении. Использование квазирезонансных ключей значительно повышает энергетические,
динамические и удельные характеристики источников питания, электромагнитную совместимость с питающей сетью. Работа таких преобразователей на высокой частоте также способствует уменьшению пульсаций скорости электродвигателя.
В настоящее время квазирезонансные преобразователи в основном используются во вторичных источниках электропитания радиоэлектронной аппаратуры. Анализ отечественных и зарубежных литературных источников показал, что вопросам использования квазирезонансных импульсных преобразователей для питания электродвигателей уделяется очень мало внимания, но потребность в таких исследованиях существует.
Таким образом, встает необходимость в исследовании динамических процессов в квазирезонансных импульсных преобразователях (КРИП) постоянного напряжения с нагрузкой в виде двигателя с целью повышения
технико-экономических характеристик источников питания для
электродвигателей.
Связь работы с научными программами, планами, темами. Диссертационная работа выполнена в Черниговском государственном технологическом университете по приоритетному направлению развития науки и техники Украины в рамках научно-исследовательской работы «Исследование теоретических и прикладных проблем повышения качества электроэнергии в сети» №55/00 (№ ГР 0100U000816) в соответствии с решением Научно¬экспертного совета МОН Украины, протокол №11 от 12.01.2000, в которой соискатель был ответственным исполнителем.
Цель и задачи исследований. Целью диссертации является дальнейшее развитие теории и практики квазирезонансных импульсных преобразователей и разработка на этой основе рекомендаций по созданию новых преобразователей с повышенным качеством для использования в точном электроприводе постоянного тока.
Для достижения поставленной цели решаются следующие задачи.
1) Исследование электромагнитных процессов в квазирезонансных импульсных преобразователях, переключаемых при нулевом токе (КРИП-ПНТ) с нагрузкой в виде двигателя постоянного тока (ДПТ).
2) Определение статических характеристик КРИП-ПНТ с ДПТ; нахождение пульсаций тока и скорости двигателя постоянного тока.
3) Определение алгоритма работы системы управления КРИП-ПНТ, оптимальной по быстродействию.
4) Электронное моделирование КРИП с ДПТ для уточнения теоретических результатов исследования.
5) Разработка лабораторных образцов КРИП-ПНТ для питания электропривода.
6) Разработка рекомендаций по областям наиболее эффективного применения КРИП в прецизионном электроприводе.
Объектом исследования является квазирезонансный импульсный преобразователь, переключаемый при нулевом токе, с нагрузкой в виде двигателя постоянного тока.
Предметом исследований являются электромагнитные процессы в квазирезонансном импульсном преобразователе, переключаемом при нулевом токе с двигателем постоянного тока; механические характеристики двигателя постоянного тока с КРИП-ПНТ, оптимизация системы управления КРИП-ПНТ по быстродействию.
Методы исследования. При решении поставленных в диссертации задач использовались теория электрических цепей, положения фундаментальной теории линейных и нелинейных импульсных систем, операторный метод, метод Z-преобразования, кусочно-припасовочный метод, принцип максимума Понтрягина, математическое и физическое моделирование.
Математические расчеты выполнены на персональном компьютере с использованием программы Maple, моделирование динамических процессов в импульсных преобразователях - с использованием пакета программ PSpice. Для получения данных с цифрового осциллографа применялось компьютерное программное обеспечение WaveStar.
Научная новизна полученных результатов:
- получили дальнейшее развитие теоретические исследования квазирезонансных импульсных преобразователей;
- впервые выполнен анализ электромагнитных процессов в КРИП-ПНТ с нагрузкой в виде ДПТ, установлена связь между параметрами КРИП-ПНТ и ДПТ;
- впервые определено влияние противо-э.д.с. якоря ДПТ на режим переключения при нулевом токе КРИП-ПНТ;
- определены раньше неизвесные диапазоны влияния резонансного контура КРИП-ПНТ на импульсные механические характеристики ДПТ и пульсации скорости;
- получило дальнейшее развитие электромагнитной совместимости КРИП-ПНТ с питающей сетью;
- получены новые аналитические зависимости выходного сигнала системы управления КРИП, оптималного по быстродействию.
Практическое значение полученных результатов:
- доказано, что использование квазирезонансных преобразователей в качестве ключевых элементов источников питания для двигателей постоянного тока позволяет улучшить технико-экономические характеристики точных электроприводов и их электромагнитную совместимость с питающей сетью;
- на основе принципа максимума Понтрягина, для КРИП-ПНТ с ДПТ разработана цифровая система управления, оптимизированная по быстродействию;
- разработаны рекомендации по применению КРИП- ПНТ в системах электроприводов постоянного тока;
- теоретические результаты исследований положены в основу создания эффективных реверсивных КРИП-ПНТ для питания двигателей постоянного тока, которые рекомендованы для использования в разработках совместного научно-производственного медицинского предприятия «СОЛИНГ» (г. Киев) и в разработках ОАО «ЧеЗаРа» (г. Чернигов);
- результаты анализа электромагнитных процессов в КРИП-ПНТ с ДПТ, полученные выражения импульсных механических характеристик ДПТ с питанием от КРИП-ПНТ, действующие макеты КРИП-ПНТ используются в лекциях, на практических и лабораторных занятиях по курсу "Системы преобразовательной техники" а также в дипломном проектировании на кафедре промышленной электроники Черниговского государственного технологического университета.
Личный вклад соискателя. Научные положения и результаты, изложенные в диссертации, получены автором лично.
Работы [58, 59] написаны автором самостоятельно. В печатных изданиях, опубликованных в соавторстве, лично соискателю принадлежит: в [29] - экспериментальное исследование спектра потребляемого от сети тока; в [30] - расчет электромагнитных процессов в КРИП-ПНТ с ДПТ, компьютерное моделирование и экспериментальная проверка результатов расчета; в [28] - расчет импульсных механических характеристик и пульсации скорости ДПТ с питанием от КРИП, экспериментальная проверка результатов расчета на макете.
Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на:
1. Международной конференции «Проблемы современной
электротехники» (Киев, 2000 г.).
2. Международной научно-технической конференции «Силовая
электроника и энергоэффективность» (Алушта, 2001 г.).
3. На научных семинарах Национальной Академии Наук Украины «Научные основы электроэнергетики» (Чернигов, 1999 - 2004 гг.).
Публикации. Основное содержание диссертации отражено в 5 статьях, опубликованных в специальных научных изданиях (из них 2 статьи без соавторов).
Во многих электронных устройствах преобразователи для питания электродвигателей являются звеном со значительным энергопотреблением по сравнению с остальными цепями. В последнее время происходит резкий рост объемов выпуска и улучшение качества силовых полупроводниковых приборов с высокими статическими и динамическими характеристиками, что позволяет создать новое поколение импульсных преобразователей электроэнергии.
Настоящая диссертация посвящена разработке импульсных источников питания электродвигателей с улучшенными технико-экономическими характеристиками и экспериментальной проверке полученных результатов на примерах проектирования новых образцов источников питания для точного электропривода постоянного тока. Практическая цель диссертации направлена на внедрение разработанной теории и практических результатов в учебный процесс и в практику организаций, занимающихся исследованием и разработкой источников питания для двигателей постоянного тока. Несмотря на то, что указанным вопросам, традиционно, уделяется много внимания со стороны исследователей, инженеров-проектировщиков, проблема создания надёжных экономных и малогабаритных источников питания, электромагнитно совместимых с сетью, по-прежнему остаётся актуальной. Этой проблеме посвятили свои труды известные специалисты силовой электроники: А. К. Шидловский, Т. А. Глазенко, И. В. Волков, В. С. Руденко, А. И. Денисов, В. Н. Исаков, К. А. Липковский, Э. М. Чехет, Н. С. Комаров, В. П. Шипилло, В. А. Лабунцов, О. Г. Булатов, А. Д. Поздеев, В. Я. Жуйков и др.
В немалой степени существованию вышеуказанной проблемы способствует несовершенство методов проектирования импульсных систем питания. Известные методы не всегда с достаточной точностью учитывают влияние дискретной нелинейности импульсных систем на характер динамических процессов.
Актуальность темы. Изначально источники питания электродвигателей выполнялись на основе лишь непрерывного регулирования, поэтому расчёт их динамических характеристик не был связан с принципиальными трудностями. Основу методов их расчёта составляла классическая теория управления и регулирования [13, 14, 36, 49]. Непрерывные (линейные) источники питания разрабатываются и в настоящее время, однако, диапазон их применения постоянно сужается из-за невысоких технико-экономических характеристик.
Уже сравнительно давно в качестве источников питания для электродвигателей широко используются импульсные преобразователи, в основном на базе широтно-импульсной модуляции (ШИМ). Эти преобразователи имеют высокий коэффициент полезного действия (КПД) и хорошие массогабаритные показатели, но в то же время они генерируют в эфир и питающую сеть значительный уровень электромагнитных помех.
В настоящее время, при разработке источников питания электропривода, вопросы качественной стабилизации скорости, электромагнитной совместимости с питающей сетью решаются комплексно на основании новейших достижений технологии производства силовых полупроводниковых приборов и микросхемотехники.
Современный уровень элементной базы силовой электроники - мощных полностью управляемых полупроводниковых приборов, магнитных материалов, конденсаторов - позволяет разрабатывать малогабаритные и надежные ключи в интегральном исполнении, работающие в мегагерцовом частотном диапазоне, когда в качестве фильтрующих цепей выступают паразитные параметры схемы.
Реализация возможностей современной элементной базы, с целью достижения граничных характеристик источников питания электродвигателей, связано с глубоким изучением процессов, протекающих в их энергетических и информационных каналах с учетом специфики режимов энергопреобразования, управления. В частности, на высоких частотах растет влияние помех, а также параметров силовых приборов и фильтров на динамические процессы в преобразователе, что заставляет искать новые принципы построения ключевых элементов и цепей обратной связи.
В последнее десятилетие в стадии интенсивных исследований находятся ключевые элементы на основе квазирезонанса, переключение которых происходит при нулевом токе или же при нулевом напряжении. Использование квазирезонансных ключей значительно повышает энергетические,
динамические и удельные характеристики источников питания, электромагнитную совместимость с питающей сетью. Работа таких преобразователей на высокой частоте также способствует уменьшению пульсаций скорости электродвигателя.
В настоящее время квазирезонансные преобразователи в основном используются во вторичных источниках электропитания радиоэлектронной аппаратуры. Анализ отечественных и зарубежных литературных источников показал, что вопросам использования квазирезонансных импульсных преобразователей для питания электродвигателей уделяется очень мало внимания, но потребность в таких исследованиях существует.
Таким образом, встает необходимость в исследовании динамических процессов в квазирезонансных импульсных преобразователях (КРИП) постоянного напряжения с нагрузкой в виде двигателя с целью повышения
технико-экономических характеристик источников питания для
электродвигателей.
Связь работы с научными программами, планами, темами. Диссертационная работа выполнена в Черниговском государственном технологическом университете по приоритетному направлению развития науки и техники Украины в рамках научно-исследовательской работы «Исследование теоретических и прикладных проблем повышения качества электроэнергии в сети» №55/00 (№ ГР 0100U000816) в соответствии с решением Научно¬экспертного совета МОН Украины, протокол №11 от 12.01.2000, в которой соискатель был ответственным исполнителем.
Цель и задачи исследований. Целью диссертации является дальнейшее развитие теории и практики квазирезонансных импульсных преобразователей и разработка на этой основе рекомендаций по созданию новых преобразователей с повышенным качеством для использования в точном электроприводе постоянного тока.
Для достижения поставленной цели решаются следующие задачи.
1) Исследование электромагнитных процессов в квазирезонансных импульсных преобразователях, переключаемых при нулевом токе (КРИП-ПНТ) с нагрузкой в виде двигателя постоянного тока (ДПТ).
2) Определение статических характеристик КРИП-ПНТ с ДПТ; нахождение пульсаций тока и скорости двигателя постоянного тока.
3) Определение алгоритма работы системы управления КРИП-ПНТ, оптимальной по быстродействию.
4) Электронное моделирование КРИП с ДПТ для уточнения теоретических результатов исследования.
5) Разработка лабораторных образцов КРИП-ПНТ для питания электропривода.
6) Разработка рекомендаций по областям наиболее эффективного применения КРИП в прецизионном электроприводе.
Объектом исследования является квазирезонансный импульсный преобразователь, переключаемый при нулевом токе, с нагрузкой в виде двигателя постоянного тока.
Предметом исследований являются электромагнитные процессы в квазирезонансном импульсном преобразователе, переключаемом при нулевом токе с двигателем постоянного тока; механические характеристики двигателя постоянного тока с КРИП-ПНТ, оптимизация системы управления КРИП-ПНТ по быстродействию.
Методы исследования. При решении поставленных в диссертации задач использовались теория электрических цепей, положения фундаментальной теории линейных и нелинейных импульсных систем, операторный метод, метод Z-преобразования, кусочно-припасовочный метод, принцип максимума Понтрягина, математическое и физическое моделирование.
Математические расчеты выполнены на персональном компьютере с использованием программы Maple, моделирование динамических процессов в импульсных преобразователях - с использованием пакета программ PSpice. Для получения данных с цифрового осциллографа применялось компьютерное программное обеспечение WaveStar.
Научная новизна полученных результатов:
- получили дальнейшее развитие теоретические исследования квазирезонансных импульсных преобразователей;
- впервые выполнен анализ электромагнитных процессов в КРИП-ПНТ с нагрузкой в виде ДПТ, установлена связь между параметрами КРИП-ПНТ и ДПТ;
- впервые определено влияние противо-э.д.с. якоря ДПТ на режим переключения при нулевом токе КРИП-ПНТ;
- определены раньше неизвесные диапазоны влияния резонансного контура КРИП-ПНТ на импульсные механические характеристики ДПТ и пульсации скорости;
- получило дальнейшее развитие электромагнитной совместимости КРИП-ПНТ с питающей сетью;
- получены новые аналитические зависимости выходного сигнала системы управления КРИП, оптималного по быстродействию.
Практическое значение полученных результатов:
- доказано, что использование квазирезонансных преобразователей в качестве ключевых элементов источников питания для двигателей постоянного тока позволяет улучшить технико-экономические характеристики точных электроприводов и их электромагнитную совместимость с питающей сетью;
- на основе принципа максимума Понтрягина, для КРИП-ПНТ с ДПТ разработана цифровая система управления, оптимизированная по быстродействию;
- разработаны рекомендации по применению КРИП- ПНТ в системах электроприводов постоянного тока;
- теоретические результаты исследований положены в основу создания эффективных реверсивных КРИП-ПНТ для питания двигателей постоянного тока, которые рекомендованы для использования в разработках совместного научно-производственного медицинского предприятия «СОЛИНГ» (г. Киев) и в разработках ОАО «ЧеЗаРа» (г. Чернигов);
- результаты анализа электромагнитных процессов в КРИП-ПНТ с ДПТ, полученные выражения импульсных механических характеристик ДПТ с питанием от КРИП-ПНТ, действующие макеты КРИП-ПНТ используются в лекциях, на практических и лабораторных занятиях по курсу "Системы преобразовательной техники" а также в дипломном проектировании на кафедре промышленной электроники Черниговского государственного технологического университета.
Личный вклад соискателя. Научные положения и результаты, изложенные в диссертации, получены автором лично.
Работы [58, 59] написаны автором самостоятельно. В печатных изданиях, опубликованных в соавторстве, лично соискателю принадлежит: в [29] - экспериментальное исследование спектра потребляемого от сети тока; в [30] - расчет электромагнитных процессов в КРИП-ПНТ с ДПТ, компьютерное моделирование и экспериментальная проверка результатов расчета; в [28] - расчет импульсных механических характеристик и пульсации скорости ДПТ с питанием от КРИП, экспериментальная проверка результатов расчета на макете.
Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на:
1. Международной конференции «Проблемы современной
электротехники» (Киев, 2000 г.).
2. Международной научно-технической конференции «Силовая
электроника и энергоэффективность» (Алушта, 2001 г.).
3. На научных семинарах Национальной Академии Наук Украины «Научные основы электроэнергетики» (Чернигов, 1999 - 2004 гг.).
Публикации. Основное содержание диссертации отражено в 5 статьях, опубликованных в специальных научных изданиях (из них 2 статьи без соавторов).
В диссертационной работе решена актуальная задача улучшения параметров точного электропривода постоянного тока и повышения качества электроэнергии в сети. Проведен анализ квазирезонансных импульсных преобразователей с нагрузкой в виде двигателя постоянного тока и получены новые научно обоснованные теоретические и практические результаты, которые являются существенными для дальнейшего развития теории импульсных преобразователей и разработке на их основе новых преобразова¬телей повышенного качества для использования в точном электроприводе. Основные научные и практические результаты состоят в следующем.
1. Обоснована необходимость дальнейшего развития теории и практики КРИП с нагрузкой в виде ДПТ. Полученые результаты позволяют создать новые КРИП для использования в электроприводе постоянного тока с целью повышения его качественных показателей.
2. Исследованы эктромагнитные процессы в КРИП-ПНТ с ДПТ, установлен их вид и характер в виде математических выражений, связывающих между собой параметры преобразователя и двигателя. Полученные выражения позволяют учесть специфику КРИП-ПНТ, как звена системы точного электропривода постоянного тока.
3. Установлено, что под влиянием противо-э.д.с якоря ДПТ у однополупериодного КРИП-ПНТ изменяется длительность первого коммутационного интервала в два раза, а второго - в несколько раз, что говорит о необходимости применения схемы контроля прохождения тока ключа через ноль. В двухполупериодном КРИП-ПНТ длительность первого коммутационного интервала практически не зависит от противо-э.д.с. якоря и в этом случае нет необходимости в контроле прохождения тока силового ключа через ноль.
4. Проанализовано влияние КРИП-ПНТ на статические характеристики ДПТ. Установлено, что при использовании КРИП-ПНТ для питания ДПТ импульсные механические характеристики последнего нелинейны и мягче чем у ШИП с ДПТ, где аналогичные характеристики линейны. Нелинейность особенно проявляется в диапазоне малых нагрузок (МН < 0.2). С двухполупериодным КРИП-ПНТ механические характеристики жестче, чем с однополупериодным КРИП-ПНТ, а уровень пульсаций скорости ДПТ меньше и слабо зависит от нагрузки.
5. Доказана эффективность оптимизации системы управления КРИП-ПНТ по быстродействию с использованием принципа максимума Понтрягина. Показано, что для позиционирования за минимальное время необходимо сформировать три интервала управляющего воздействия: максимального по амплитуде и с чередованием знака на соседних интервалах. Рассчитаны соответствующие уровни и моменты переключения управляющего воздействия.
6. Обоснована целесообразность использования КРИП-ПНТ в точном электроприводе и разработаны соответствующие рекомендации. При этом, по сравнению с ШИП, улучшается электромагнитная совместимость с питающей сетью, обеспечивается меньший уровень помех и более высокие энергетические и массогабаритные показатели.
7. Разработаны образцы реверсивного КРИП-ПНТ мощностью 200 Вт для питания ДПТ с цифровой системой управления на ПЛИС с целью использования их в системах позиционирования и стабилизации скорости точного электропривода (погрешность стабилизации средней скорости - 0.01%), которые рекомендованы к внедрению в опытное производство СНПМП «СОЛИНГ» (г. Киев) и ОАО «ЧезаРа», (г. Чернигов). Теоретические и практические результаты диссертационной работы нашли применение в учебном процессе Черниговского государственного технологического университета на кафедре промышленной электроники.
8. Достоверность и обоснованность научных исследований, выводов и рекомендаций подтверждается согласованием теоретических результатов с экспериментальными данными и результатами моделирования.
1. Обоснована необходимость дальнейшего развития теории и практики КРИП с нагрузкой в виде ДПТ. Полученые результаты позволяют создать новые КРИП для использования в электроприводе постоянного тока с целью повышения его качественных показателей.
2. Исследованы эктромагнитные процессы в КРИП-ПНТ с ДПТ, установлен их вид и характер в виде математических выражений, связывающих между собой параметры преобразователя и двигателя. Полученные выражения позволяют учесть специфику КРИП-ПНТ, как звена системы точного электропривода постоянного тока.
3. Установлено, что под влиянием противо-э.д.с якоря ДПТ у однополупериодного КРИП-ПНТ изменяется длительность первого коммутационного интервала в два раза, а второго - в несколько раз, что говорит о необходимости применения схемы контроля прохождения тока ключа через ноль. В двухполупериодном КРИП-ПНТ длительность первого коммутационного интервала практически не зависит от противо-э.д.с. якоря и в этом случае нет необходимости в контроле прохождения тока силового ключа через ноль.
4. Проанализовано влияние КРИП-ПНТ на статические характеристики ДПТ. Установлено, что при использовании КРИП-ПНТ для питания ДПТ импульсные механические характеристики последнего нелинейны и мягче чем у ШИП с ДПТ, где аналогичные характеристики линейны. Нелинейность особенно проявляется в диапазоне малых нагрузок (МН < 0.2). С двухполупериодным КРИП-ПНТ механические характеристики жестче, чем с однополупериодным КРИП-ПНТ, а уровень пульсаций скорости ДПТ меньше и слабо зависит от нагрузки.
5. Доказана эффективность оптимизации системы управления КРИП-ПНТ по быстродействию с использованием принципа максимума Понтрягина. Показано, что для позиционирования за минимальное время необходимо сформировать три интервала управляющего воздействия: максимального по амплитуде и с чередованием знака на соседних интервалах. Рассчитаны соответствующие уровни и моменты переключения управляющего воздействия.
6. Обоснована целесообразность использования КРИП-ПНТ в точном электроприводе и разработаны соответствующие рекомендации. При этом, по сравнению с ШИП, улучшается электромагнитная совместимость с питающей сетью, обеспечивается меньший уровень помех и более высокие энергетические и массогабаритные показатели.
7. Разработаны образцы реверсивного КРИП-ПНТ мощностью 200 Вт для питания ДПТ с цифровой системой управления на ПЛИС с целью использования их в системах позиционирования и стабилизации скорости точного электропривода (погрешность стабилизации средней скорости - 0.01%), которые рекомендованы к внедрению в опытное производство СНПМП «СОЛИНГ» (г. Киев) и ОАО «ЧезаРа», (г. Чернигов). Теоретические и практические результаты диссертационной работы нашли применение в учебном процессе Черниговского государственного технологического университета на кафедре промышленной электроники.
8. Достоверность и обоснованность научных исследований, выводов и рекомендаций подтверждается согласованием теоретических результатов с экспериментальными данными и результатами моделирования.



