1. Alain, K., &Querellou, J. (2009). Cultivating the uncultured: Limits, advances and future challenges. Extremophiles (1431-0651) (Springer), 2009-07, Vol. 13, N. 4, P. 583-594, 13. https://doi.org/10.1007/s00792-009- 0261-3
2. Amann, R. I., Krumholz, L., & Stahl, D. A. (1990). Fluorescent-
oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology, 172(2), 762-770.
3. Aullo, T., Berlendis, S., Lascourreges, J.-F., Dessort, D., Duclerc, D., Saint- Laurent, S., Schraauwers, B., Mas, J., Patriarche, D., Boesinger, C., Magot, M., & Ranchou-Peyruse, A. (2016). New Bio-Indicators for Long Term Natural Attenuation of Monoaromatic Compounds in Deep Terrestrial Aquifers. https: //www.frontiersin.org/article/10.3389/fmicb.2016.00122
4. Aullo, T., Ranchou-Peyruse, A., Ollivier, B., & Magot, M. (2013).
Desulfotomaculum spp. And related gram-positive sulfate-reducing bacteria in deep subsurface environments. Frontiers in Microbiology, 4. https://www.frontiersin.org/article/ 10.3389/fmicb.2013.00362
5. Ayangbenro, A. S., Olanrewaju, O. S., & Babalola, O. O. (2018). Sulfate¬
reducing bacteria as an effective tool for sustainable acid mine bioremediation. Frontiers in Microbiology, 9(AUG), 1 -10.
https://doi.org/10.3389/fmicb.2018.01986
6. Bagnoud, A., Chourey, K., Hettich, R. L., de Bruijn, I., Andersson, A. F., Leupin, O. X., Schwyn, B., & Bernier-Latmani, R. (2016). Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. Nature Communications, 7, 12770. https://doi.org/10.1038/ncomms12770
7. Bai, H., Kang, Y., Quan, H., Han, Y., Sun, J., & Feng, Y. (2013). Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale
runs. Bioresource Technology,
https://doi.Org/10.1016/j.biortech.2012.10.070
8. Baker, B. J., Saw, J. H., Lind, A. E., Lazar, C. S., Hinrichs, K., Teske, A. P., & Ettema, T. J. G. (2016). Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. 1 (February). https://doi.org/10.1038/nmicrobiol.2016.2
9. Balk, M., Mehboob, F., Van Gelder, A. H., Rijpstra, W. I. C., Damste, J. S.
S., & Stams, A. J. M. (2010). (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage. Applied Microbiology and Biotechnology, 88 (2), 595-603.
https://doi.org/10.1007/s00253-010-2788-8
10. Balk, M., Van Gelder, T., Weelink, S. A., & Stams, A. J. M. (2008). (Per)
chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. Nov., isolated from underground gas storage. Applied and Environmental Microbiology, 74 (2), 403-409.
https://doi.org/10.1128/AEM.01743-07
11. Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on
Earth. Proceedings of the National Academy of Sciences of the United States of America, 115 (25), 6506-6511.
https://doi.org/10.1073/pnas.1711842115
12. Basso, O., Lascourreges, J.-F., Jarry, M., & Magot, M. (2005). The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environmental Microbiology, 7 (1), 13-21. https://doi.org/10T111/j.1462-2920.2004.00660.x
13. Basso, O., Lascourreges, J.-F., Le Borgne, F., Le Goff, C., & Magot, M.
(2009). Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer. Research in Microbiology, 160 (2), 107-116.
https://doi.org/10.1016/j.resmic.2008.10.010
14. Batzke, A., Engelen, B., Sass, H., & Cypionka, H. (2007). Phylogenetic and Physiological Diversity of Cultured Deep-Biosphere Bacteria from Equatorial Pacific Ocean and Peru Margin Sediments.
15. Beeder, J., Nilsen, R. K., Rosnes, J. T., Torsvik, T., & Lien, T. (1994).
Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters. Applied and Environmental Microbiology, 60 (4), 1227-1231.
https://doi.org/10J128/aem.60.4.1227-1231.1994
16. Bryan, C. G., Hallberg, K. B., & Johnson, D. B. (2006). Mobilisation of
metals in mineral tailings at the abandoned Sao Domingos copper mine
(Portugal) by indigenous acidophilic bacteria.
17. Bryant, M. P., Campbell, L. L., Reddy, C. A., & Crabill, M. R. (1977).
Growth of desulfovibrio in lactate or ethanol media low in sulfate in
association with H2 utilizing methanogenic bacteria. Applied and Environmental Microbiology, 33 (5), 1162-1169.
https://doi.org/10.1128/aem.33.5.1162-1169.1977
18. Chivian, D., Brodie, E. L., Alm, E. J., Culley, D. E., Dehal, P. S., Desantis,
T. Z., Gihring, T. M., Lapidus, A., Lin, L., Lowry, S. R., Moser, D. P., Richardson, P. M., Southam, G., Wanger, G., Pratt, L. M., & Andersen, G.
L. (2008). Deep Within Earth. Science, 322 (October), 275-278.
19. Cohen, R. (2006). Use of microbes for cost reduction of metal removal from
metals and mining industry waste streams.
https://doi.org/10.1016/JJCLEPRO.2004.10.009
20. Curtis, T. P., Sloan, W. T., & Scannell, J. W. (2002). Estimating prokaryotic
diversity and its limits. Proceedings of the National Academy of Sciences of the United States of America, 99 (16), 10494-10499.
https://doi.org/10.1073/pnas. 142680199
21. Dong, Y., Kumar, C. G., Chia, N., Kim, P., Miller, P. A., Price, N. D., Cann, I. K. O., Flynn, T. M., Sanford, R. A., Krapac, I. G., Ii, R. A. L., Hong, P., Tamaki, H., Liu, W., Mackie, R. I., Hernandez, A. G., Wright, C. L., Mikel,
M. A., Walker, J. L., Fouke, B. W. (2014). Halomonas sulfidaeris -
dominated microbial community inhabits a 1. 8 km-deep subsurface
Cambrian Sandstone reservoir. 16, 1695-1708.
https://doi.org/10.1111/1462-2920.12325
22. Dziewit, L., Pyzik, A., Szuplewska, M., Matlakowska, R., Mielnicki, S., Wibberg, D., Schluter, A., Puhler, A., & Bartosik, D. (2015). Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals. Frontiers in Microbiology, 6. https: //www.frontiersin. org/article/10.33 89/fmicb.2015.00152
23. Ehrilch’s, H. (2016). Geomicrobiology fifth edition (Vol. 4).
24. Epstein, S. S. (2013). The phenomenon of microbial uncultivability. Current
Opinion in Microbiology, 16 (5), 636-642.
https://doi.org/10.1016/j.mib.2013.08.003
25. Frank, Y. A., Kadnikov, V. V., Lukina, A. P., Banks, D., Beletsky, A. V., Mardanov, A. V., Sen’kina, E. I., Avakyan, M. R., Karnachuk, O. V., & Ravin, N. V. (2016). Characterization and genome analysis of the first facultatively alkaliphilic Thermodesulfovibrio isolated from the deep terrestrial subsurface. Frontiers in Microbiology, 7 (DEC), 1-11. https://doi.org/10.3389/fmicb.2016.02000
26. Garrity, George M. & Holt, J. G. (2001). Phylum BVIlI. Nitrospirae phy. Nov. Book, 451-464.
27. Gold, T. (1992). The deep, hot biosphere. Proceedings of the National Academy of Sciences of the United States of America, 89 (13), 6045-6049. https://doi.org/10.1073/pnas.89.13.6045
28. Hallbeck, L., & Pedersen, K. (2012). Culture-dependent comparison of microbial diversity in deep granitic groundwater from two sites considered for a Swedish final repository of spent nuclear fuel. FEMS Microbiology Ecology, 81(1), 66-77. https://doi.org/10.1111/j.1574-6941.2011.01281.x
29. Haouari, O., Fardeau, M. L., Cayol, J. L., Fauque, G., Casiot, C., Elbaz- Poulichet, F., Hamdi, M., & Ollivier, B. (2008). Thermodesulfovibrio hydrogeniphilus sp. Nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring. Systematic and Applied Microbiology, 31(1), 38-42. https://doi.org/10.1016Zj.syapm.2007.12.002
30. Henry, E. A., Devereux, R., Maki, J. S., Gilmour, C. C., Mandelco, L., Schauder, R., Remsen, C. C., Woese, C. R., & Mitchell, R. (1994). Characterization of a new thermophilic sulfate-reducing bacterium. Thermodesulfovibrioyellowstonii, gen. Nov. And sp. Nov.: Its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Archives of Microbiology, 161 (1), 62-69. https://doi.org/10.1007/s002030050022
31. Hippe, H. (2000). Leptospirillum gen. Nov. (Ex Markosyan 1972), nom. Rev., including Leptospirillum ferrooxidans sp. Nov. (Ex Markosyan 1972), nom. Rev. And Leptospirillum thermoferrooxidans sp. Nov. (Golovacheva et al. 1992). International Journal of Systematic and Evolutionary Microbiology, 50 (2), 501-503. https://doi.org/10.1099/00207713-50-2-501
32. Hoehler, T. M. (2004). Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology, 2 (4), 205-215. https://doi.org/10T111/j.1472-4677.2004.00033.x
33. Ino, K., Konno, U., Kouduka, M., Hirota, A., Togo, Y. S., Fukuda, A., Komatsu, D., Tsunogai, U., Tanabe, A. S., Yamamoto, S., Iwatsuki, T., Mizuno, T., Ito, K., & Suzuki, Y. (2016). Deep microbial life in high-quality granitic groundwater from geochemically and geographically distinct underground boreholes. Environmental Microbiology Reports, 8 (2), 285-294.https://doi.org/10.1111/1758-2229.12379
34. Ivanova, A. E., Borzenkov, I. A., Tarasov, A. L., Milekhina, E. I., & Belyaev, S. S. (2007). A microbiological study of an underground gas storage in the process of gas injection. Microbiology, 76 (4), 453-460. https://doi.org/10T134/S002626170704011X
35. Janssen, P. H., Schuhmann, A., Morschel, E., & Rainey, F. A. (1997). Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Applied and Environmental Microbiology, 63 (4), 1382-1388.
36. Jorgensen, B. B. (1982). Mineralization of organic matter in the sea bed-the
role of sulphate reduction. Nature, 296 (5858), 643-645.
https://doi.org/10.1038/296643a0
37. Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A., & Janssen, P. H. (2003). Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology, 69 (12), 7210-7215. https://doi.org/10.1128/AEM.69.12.7210-7215.2003
38. Junier, P., Junier, T., Podell, S., Sims, D. R., Detter, J. C., Lykidis, A., Han, C. S., Wigginton, N. S., Gaasterland, T., & Bernier-Latmani, R. (2010). The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environmental Microbiology, 12(10), 2738-2754. https://doi.org/10.1111/j.1462-2920.2010.02242.x
39. Kaeberlein, T., Lewis, K., & Epstein, S. S. (2002). Isolating “uncultivable”
microorganisms in pure culture in a simulated natural environment. Science (New York, N.Y.), 296 (5570), 1127-1129.
https://doi.org/10.1126/science.1070633
40. Kieft, T. L. (2016). Microbiology of the Deep Continental Biosphere. 225- 249. https://doi.org/10.1007/978-3-319-28071-4_6
41. Kieu, H. t Q., Muller, E., & Horn, H. (2011). Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria.
42. Kimura, H., Sugihara, M., Yamamoto, H., Patel, B. K. C., Kato, K., & Hanada, S. (2005). Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles, 9(5), 407-414. https://doi.org/10.1007/s00792-005-0454-3
43. Konno, U., Kouduka, M., Komatsu, D. D., Ishii, K., Fukuda, A., Tsunogai,
U., Ito, K., & Suzuki, Y. (2013). Novel microbial populations in deep granitic groundwater from Grimsel Test Site, Switzerland. Microbial Ecology, 65(3), 626-637. https://doi.org/10.1007/s00248-013-0184-5
44. Kopke, B., Wilms, R., Engelen, B., Cypionka, H., & Sass, H. (2005).
Microbial Diversity in Coastal Subsurface Sediments: A Cultivation Approach Using Various Electron Acceptors and Substrate Gradients. Applied and Environmental Microbiology, 71 (12), 7819-7830.
https://doi.org/10.1128/AEM.71.12.7819-7830.2005
45. Krumholz, L. R., Elias, D. A., & Suflita, J. M. (2003). Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments. https: //pubs.er.usgs .gov/publication/70185121
46. Kutvonen, H., Rajala, P., Carpen, L., & Bomberg, M. (2015). Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms. https://www.frontiersin.org/article/10.3389/fmicb.2015.01079
47. Lau, M. C. Y., Cameron, C., Magnabosco, C., Brown, C. T., Schilkey, F., Grim, S., Hendrickson, S., Pullin, M., Lollar, B. S., Heerden, E. Van, Kieft, T. L., Onstott, T. C., Jewell, T., & Berkeley, L. (2014). Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships. 5 (October), 1-18. https://doi.org/10.3389/fmicb.2014.00531
48. Lau, M. C. Y., Kieft, T. L., Kuloyo, O., Linage-Alvarez, B., van Heerden,
E., Lindsay, M. R., Magnabosco, C., Wang, W., Wiggins, J. B., Guo, L., Perlman, D. H., Kyin, S., Shwe, H. H., Harris, R. L., Oh, Y., Yi, M. J., Purtschert, R., Slater, G. F., Ono, S., Onstott, T. C. (2016). An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur- driven autotrophic denitrifiers. Proceedings of the National Academy of Sciences of the United States of America, 113 (49), E7927-E7936.
https: //doi.org/10.1073/pnas .1612244113
49. Liang, B., Wang, L.-Y., Zhou, Z., Mbadinga, S. M., Zhou, L., Liu, J.-F.,
Yang, S.-Z., Gu, J.-D., & Mu, B.-Z. (2016). High Frequency of
Thermodesulfovibrio spp. and Anaerolineaceae in Association with Methanoculleus spp. In a Long-Term Incubation of n-Alkanes-Degrading Methanogenic Enrichment Culture. Frontiers in Microbiology, 7. https://www.frontiersin.org/article/10.3389/fmicb.2016.01431
50. Magnabosco, C., Ryan, K., Lau, M. C. Y., Kuloyo, O., Lollar, B. S., Kieft, T. L., Heerden, E. Van, & Onstott, T. C. (2016). A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. The ISME Journal, 10 (3), 730-741. https://doi.org/10.1038/ismej.2015.150
51. Mcmahon, S., & Parnell, J. (2014). Weighing the deep continental
biosphere. FEMS Microbiology Ecology, 87 (1), 113-120.
https://doi.org/10T111/1574-6941.12196
52. Miettinen, H., Kietavainen, R., Sohlberg, E., Numminen, M., Ahonen, L., &
Itavaara, M. (2015). Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhasalmi mine Finland. Frontiers in Microbiology, 6.
https://www.frontiersin.org/article/10.3389/fmicb.2015.01203
53. Miroshnichenko, M.L and Bonch-Osmolovskaya, E. A. (2006). Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. 85-96. https://doi.org/10.1007/s00792-005-0489-5
54. Mlaik, N., Bakonyi, J., Borsodi, A., Woodward, S., Lassaad, B., &
Mechichi, T. (2015). Microbial Diversity in Tanning Wastewater Treatment Reactors. Environmental Progress & Sustainable Energy, 34. https://doi.org/10.1002/ep.12000
55. Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6 (6), 441-454. https: //doi.org/10.1038/nrmicro 1892
56. Nakagawa, T., Nakagawa, S., Inagaki, F., Takai, K., & Horikoshi, K. (2004). Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiology Letters, 232 (2), 145-152. https://doi.org/10.1016/S0378-1097(04)00044-8
57. Nazina, T., Shestakova, N., Grigor’yan, A., Mikhailova, E., Tourova, T.,
Poltaraus, A., Feng, C., Ni, F., & Belyaev, S. (2006). Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P. R. China). Microbiology, 75, 55-65.
https://doi.org/10.1134/S0026261706010115
58. Nyyssonen, M., Hultman, J., Ahonen, L., Kukkonen, I., Paulin, L., Laine, P., & Ita, M. (2014). Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. 126-138. https: //doi.org/10.1038/ismej .2013.125
59. Ollivier, B., Cayol, J. L., & Fauque, G. (2007). Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents. Sulphate- Reducing Bacteria: Environmental and Engineered Systems, 305-328. https://doi.org/10.1017/CBO9780511541490.011
60. Pace, N. R. (1997). A molecular view of microbial diversity and the
biosphere. Science (New York, N.Y.), 276(5313), 734-740.
https://doi.org/10T 126/science.276.5313.734
61. Parnell, J., Brolly, C., Spinks, S., & Bowden, S. (2016). Metalliferous Biosignatures for Deep Subsurface Microbial Activity. Origins of Life and Evolution of Biospheres, 46(1), 107-118. https://doi.org/10.1007/s11084- 015-9466-x
62. Parnell, J., & Mcmahon, S. (2016). Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice—PubMed. https://pubmed.ncbi.nlm.nih.gov/26667907/
63. Pedersen, K. (2000). Exploration of deep intraterrestrial microbial life:
Current perspectives. FEMS Microbiology Letters, 185(1), 9-16.
https://doi.org/10T111/j.1574-6968.2000.tb09033.x
64. Pedersen, K., Arlinger, J., Eriksson, S., Hallbeck, A., Hallbeck, L., & Johansson, J. (2008). Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4-450 m in Olkiluoto, Finland. The ISME Journal, 2(7), 760-775. https://doi.org/10.1038/ismej.2008.43
65. Pereira, I. A. C., Ramos, A., Grein, F., Marques, M., Da Silva, S., & Venceslau, S. (2011). A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea. https: //www.frontiersin. org/article/10.3389/fmicb .2011.00069
66. Plugge, C. M. (2011). Metabolic flexibility of sulfate-reducing bacteria. Frontiers in Microbiology, 8.
67. Rabus, R., Hansen, T. A., & Widdel, F. (2006). Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.- H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes: Volume 2: Ecophysiology and Biochemistry (pp. 659-768). Springer. https://doi.org/10.1007/0-387-30742-7_22
68. Rabus, R., Hansen, T. A., & Widdel, F. (2013). Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. https://ouci.dntb.gov.ua/en/works/lm5rPLDl/
69. Rempfert, K. R., Miller, H. M., Bompard, N., Nothaft, D., Matter, J. M., Kelemen, P., Fierer, N., & Templeton, A. S. (2017). Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman. https: //www.frontiersin.org/article/10.3389/fmicb.2017.00056
70. Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J., Darling, A., Malfatti, S., Swan, B. K., Gies, E. A., Dodsworth, J. A., Hedlund, B. P., Tsiamis, G., Sievert, S. M., Liu, W., Eisen, J. A., Hallam, S. J., Kyrpides, N. C., Stepanauskas, R., Woyke, T. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 3 - 9. https://doi.org/10.1038/nature12352
71. Roussel, E. G., Bonavita, M.-A. C., Querellou, J., Cragg, B. A., Webster, G., Prieur, D., & Parkes, R. J. (2008). Extending the sub-sea-floor biosphere. https://doi.org/10T 126/science.1154545
72. Sahinkaya, E., Yurtsever, A., Toker, Y., Elcik, H., Cakmaci, M., & Kaksonen, A. H. (2015). Biotreatment of As-containing simulated acid mine drainage using laboratory scale sulfate reducing upflow anaerobic sludge blanket reactor. Minerals Engineering, 75, 133-139.
73. Sayler, G. S., & Layton, A. C. (1990). Environmental application of nucleic
acid hybridization. Annual Review of Microbiology, 44, 625-648.
https://doi.org/10.1146/annurev.mi.44.100190.003205
74. Sekiguchi, Y., Muramatsu, M., Imachi, H., Narihiro, T., Ohashi, A., Harada,
H., Hanada, S., & Kamagata, Y. (2008). Thermodesulfovibrio aggregans sp. Nov. And Thermodesulfovibrio thiophilus sp. Nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio.
https://doi.org/10.1099/ijs.0.2008/000893-0
75. Sinclair, J. L., & Ghiorse, W. C. (2009). Distribution of Aerobic Bacteria, Protozoa, Algae, and Fungi in Deep Subsurface Sediments.
76. Sohlberg, E., Bomberg, M., Miettinen, H., Nyyssonen, M., Salavirta, H.,
Vikman, M., & Itavaara, M. (2015). Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland. Frontiers in Microbiology, 6.
https://www.frontiersin.org/article/10.3389/fmicb.2015.00573
77. Sonne-Hansen, J., & Ahring, B. K. (1999). Thermodesulfobacterium
hveragerdense sp. Nov., and Thermodesulfovibrio islandicus sp. Nov., two thermophilic sulfate reducing bacteria isolated from an Icelandic hot spring. Systematic and Applied Microbiology, 22(4), 559-564.
https://doi.org/10.1016/S0723-2020(99)80009-5
78. Stahl, D. A. (1997). Molecular approaches for the measurement of density, diversity and phylogeny
79. Stetter, K. O., Lauerer, G., Thomm, M., & Neuner, A. (1987). Isolation of
extremely thermophilic sulfate reducers: Evidence for a novel branch of archaebacteria. Science (New York, N.Y.), 236(4803), 822-824.
https://doi.org/10.1126/science.236.4803.822
80. Stewart, E. J. (2012). Growing unculturable bacteria. Journal of
Bacteriology, 194(16), 4151-4160. https://doi.org/10.1128/JB.00345-12
81. Tala, A., Buccolieri, A., Calcagnile, M., Ciccarese, G., Onorato, M., Onorato, R., Serra, A., Spedicato, F., Tredici, S. M., Alifano, P., & Belmonte, G. (2021). Chemotrophic profiling of prokaryotic communities thriving on organic and mineral nutrients in a submerged coastal cave. https://doi.org/10.1016Zj.scitotenv.2020.142514
82. Teske, A., Biddle, J. F., & Lever, M. A. (2014). Chapter 2.2.2—Genetic Evidence of Subseafloor Microbial Communities. In R. Stein, D. K. Blackman, F. Inagaki, & H.-C. Larsen (Eds.), Developments in Marine Geology (Vol. 7, pp. 85-125). Elsevier. https://doi.org/10.1016/B978-0-444- 62617-2.00004-9
83. Teske, A. P. (2005). The deep subsurface biosphere is alive and well. Trends in Microbiology, 13(9), 402-404. https://doi.org/10.1016/j.tim.2005.07.004
84. Vartoukian, S. R., Palmer, R. M., & Wade, W. G. (2010). Strategies for culture of ‘unculturable’ bacteria | FEMS Microbiology Letters | Oxford Academic. https://academic.oup.com/femsle/article/309/1/1/460001
85. Ward, D. M., Bateson, M. M., & Ruff-Roberts, A. L. (1992). Ribosomal RNA analysis of microorganisms as they occur in nature
86. Ward, D. M., Weller, R., & Bateson, M. M. (1990). 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature, 345(6270), 63-65. https://doi.org/10.1038/345063a0
87. Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B., & Schlosser, U.
(1986). Nitrospira marina gen. Nov. Sp. Nov.: A chemolithotrophic nitrite-oxidizing bacterium. Archives of Microbiology, 144(1), 1-7.
https://doi.org/10.1007/BF00454947
88. Whitman, William B; Coleman, David C; and Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Brain Research, 95(1), 6578-6583. https://doi.org/10.1016/0006-8993(80)90730-1
89. Widdel, F., & Bak, F. (1992). Gram-Negative Mesophilic Sulfate-Reducing Bacteria.
90. Wilkins, M., Daly, R., Mouser, P., Trexler, R., Wrighton, K., Sharma, S., Cole, D., Biddle, J., Denis, E., Fredrickson, J., Kieft, T., Onstott, T., Petersen, L., Pfiffner, S., Phelps, T., & Schrenk, M. (2014). Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere. Frontiers in https://www.frontiersin.org/article/10.3389/fmicb.2014.00481
91. Wu, X., Holmfeldt, K., Hubalek, V., Lundin, D., Astrom, M., Bertilsson, S., & Dopson, M. (2016). Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. https://doi.org/10.1038/ismej.2015.185
92. Wu, Y., Tan, L., Liu, W., Wang, B., Wang, J., Cai, Y., & Lin, X. (2015). Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. https://www.frontiersin.org/article/10.3389/fmicb.2015.00244
93. Yang, G.-C., Zhou, L., Mbadinga, S. M., Liu, J.-F., Yang, S.-Z., Gu, J.-D., & Mu, B.-Z. (2016). Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of Methanogenesis in Production Water of High- temperature Oil Reservoirs Amended with Bicarbonate. https://www.frontiersin.org/article/10.3389/fmicb.2016.00365
94. Zhang, M. (2014). Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage.
95. Zhang, M., & Wang, H. (2016). Preparation of immobilized sulfate reducing
bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Minerals Engineering, 92, 63-71.
https://doi.org/10.1016/j.mineng.2016.02.008
96. Zhou, H.-B., Zeng, W.-M., Yang, Z.-F., Xie, Y.-J., & Qiu, G.-Z. (2009). Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Bioresource Technology, 6.
97. Zhou, L., Lu, Y.-W., Wang, D.-W., Zhang, S.-L., Tang, E.-G., Qi, Z.-Z., Xie, S.-N., Wu, J., Liang, B., Liu, J.-F., Yang, S.-Z., Zhang, J., Gu, J.-D., &
Mu, B.-Z. (2020). Microbial community composition and diversity in
production water of a high-temperature offshore oil reservoir assessed by DNA- and RNA-based analyses. International Biodeterioration & Biodegradation, 151, 104970. https://doi.org/10.1016/j.ibiod.2020.104970
98. Друганов, Д. А., &Лукина, А. П. (2018). Старт в науку: Материалы LXVII научной студенческой конференции Биологического института. Томск, 23-27 апреля 2018 г.
99. Климова, К. М., & Франк, Ю. А. (2017). Изучение геохимической роли сульфатредуцирующих бактерий рода Thermodesulfovibrioв цикле железа. 120-122. https://www.elibrary.ru/item.asp?id=37326819
Купить