Тип работы:
Предмет:
Язык работы:


Индивидуализация процесса обучения математике в условиях реализации ФГОС

Работа №167105

Тип работы

Дипломные работы, ВКР

Предмет

педагогика

Объем работы115
Год сдачи2016
Стоимость4335 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
18
Не подходит работа?

Узнай цену на написание


ВВЕДЕНИЕ 3
ГЛАВА I. Теоретические аспекты процесса индивидуализации обучения математике в условиях реализации 7
1.1. Особенности организации процесса обучения математике в
условиях реализации современных ФГОС 7
1.2. Индивидуализация процесса обучения как педагогический
феномен 16
1.3. Способы индивидуализации обучения математике в условиях
реализации современных ФГОС 27
ГЛАВА II. Опытная работа по организации индивидуализации процесса обучения математике в условиях ФГОС 40
2.1. Проектирование индивидуальных образовательных
траекторий 40
2.2. Пути решения вопросов организации индивидуализации процесса
обучения математике в условиях ФГОС 48
2.3. Описание результатов опытно-экспериментальной работы 62
ЗАКЛЮЧЕНИЕ 68
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 70
ПРИЛОЖЕНИЕ 1. Тест по математике по программе 5 класса 77
ПРИЛОЖЕНИЕ 2. Конспект урока «Признаки делимости на 9 и 3» 82
ПРИЛОЖЕНИЕ 3. Конспект урока «Разложение чисел на простые множители» 91
ПРИЛОЖЕНИЕ 4. Методика определения одаренности Айзенка 100
ПРИЛОЖЕНИЕ 5. Тест личностных характеристик Вильямса 103
ПРИЛОЖЕНИЕ 6. Диагностика учебной мотивации Т.Д. Дубовицкой.... 110
ПРИЛОЖЕНИЕ 7. Контрольная работа №1 114
ПРИЛОЖЕНИЕ 8. Контрольная работа №2 115


Актуальность исследования. Современной отечественной системе образования присущи инновационные процессы, которые призваны повысить качество обучения. Запущенный в начале 2000-х годов механизм модернизации повлек за собой качественные изменения всех составляющих образовательного процесса. В том числе были привнесены нововведения в теоретико-методологических положениях по проектированию, организации и сопровождению процесса обучения в целом и по отдельным предметам в частности в общеобразовательных упреждениях. В результате на смену традиционного подхода в образовательной практике реализуется качественно новая модель обучения, основанная на системно-деятельностном подходе. Данный подход требует реализации ряда требований, среди которых особое значение приобретает организация процесса индивидуализации в процессе обучения математике.
Необходимость реализации процесса обучения на основе индивидуализации исторически не новое веяние в образовательной практике. На различных этапах развития педагогической мысли оно организовывалось и осуществлялось в соответствии с действующей педагогической системой и полностью завесило от учителя. Сегодня же процесс индивидуализации рассматривается как требование организации процесса обучения, продиктованное основными нормативными актами в области образования (ФГОС второго поколения, Президентская инициатива «Наша новая школа», Концепция развития математического образования и т.д.). Кроме того, в Законе об образовании [30] право на обучение в равных социальных условиях получили дети с особыми потребностями в развитии. Безусловно, такие обучающиеся не в силе осваивать программу по математике на ровне с обычными детьми. Для таких детей необходимо разрабатывать специальные дидактические материалы, обеспечивать индивидуальное сопровождение процесса обучения
Мысль об индивидуализации процесса обучения была подчеркнута еще древними дидактами, а в первую очередь Конфуцием, который говорил о том, что в процессе обучения необходимо учитывать индивидуальные особенности обучающихся: темперамент, характер, опыт, особенности восприятия материала, скорость его усвоения, индивидуальный уровень развития обучающихся, его мотивов и интересов и т.д. Как показывает анализ психолого-педагогической литературы о необходимости учета индивидуальных особенностей обучающихся говорят и современные педагоги-исследователи (Н. Евстигнеева, Т.С.Ширикова, Л.Фридман,В.А. Садовничий,И.М. Чередов, И.М. Осмоловская, А.А. Кирсанов, А.А. Бударный, Е.С. Рабунский, Г.И. Щукина, В.В. Давыдов, Е.Б. Зеленина и др). Все это в полной мере касается и процесса обучения математике, как одного из ведущих школьного предмета основной образовательной программы.
В тоже время, анализ педагогического опыта и практики позволяет констатировать то факт, что на сегодняшний момент не все учителя математики реализуют идеи индивидуализации процесса обучения в полной мере. Большая часть учителей математики ограничивается включением лишь отдельных форм, средств обучения, позволяющих индивидуализировать процесс обучения в рамках определенного вида деятельности (например, самостоятельной работы) или темы программы. Кроме того, до сих пор сохраняется тенденция к усреднению темпа работы на учебном занятии, когда обучающиеся испытывающие затруднения в процессе обучения математике не успевают, а преуспевающие в обучении наоборот теряют интерес. И это все происходит на фоне реализации ФГОС второго поколения, в которых подчеркнута необходимость реализации индивидуализации обучения. Более того, в стандарте продекламирована идея вариативности содержания обучения, которая подразумевает, в том числе, и выстраивания индивидуальных маршрутов обучения для обучающихся.
Существуют научно-педагогические, методические разработки в области индивидуализации обучения. Ввиду многогранности вопроса, он продолжает привлекать к себе внимание ученых (А. А. Кирсанов, А. Г. Русских, И.Э. Унт, И.М. Чередов и другие). В тоже время существуют аспекты процесса индивидуализации обучения математике, которые не до конца изучены и раскрыты. Исходя из этого, возникает научная проблема: что необходимо предпринять, чтобы индивидуализация приводила к положительным результатам в современном процессе обучения математике? Поэтому в качестве темы исследования мы определили: «Индивидуализация процесса обучения математике в условиях реализации ФГОС».
В качестве объекта исследования мы рассматриваем процесс обучения математике.
Предметом исследования является индивидуализация процесса обучения математике.
Цель нашего исследования состоит в разработке методических рекомендации по организации обучения математике на основе индивидуальных образовательных траектории, как наиболее перспективного способа реализации индивидуализации обучения математике.
Гипотеза исследования состоит в том, что обучение математике на основе индивидуализации будет возможным, если обучение математике выстраивать на основе индивидуальных образовательных траекторий, то это будет способствовать повышению уровня математической подготовки обучающихся.
Исходя из цели и гипотезы, были сформулированы следующие задачи исследования:
- на основе анализа психолого-педагогической и методической литературы выявить особенности обучения математике в условиях реализации современных ФГОС;
- выявить и раскрыть содержание процесса индивидуализации обучения;
- выявить, описать и сравнить способы реализации индивидуализации процесса обучения математике;
- выявить и описать этапы проектирования индивидуальной траектории обучающихся по математике;
- выявить и описать методические рекомендации по индивидуализации процесса обучения математике на основе индивидуальной траектории;
- экспериментально подтвердить эффективность разработанных методических рекомендаций в процессе изучения темы.
Структура работы определяется спецификой выбранной темы и особенностями отобранного для исследования материала: введение, две главы, заключение, библиографический список, приложения.


Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


Современному учителю математики важно и необходимо использовать различные нетрадиционные технологии обучения, проявлять активное участие в инновационных процессах, чтобы улучшить качество процесса обучения математике.
В ходе решения поставленных в исследовании задач были получены следующие результаты.
1. Выявлены особенности современного процесса обучения математике, в качестве которых выступают: цели, формы, методы, содержание, принципы.
2. Среди педагогических условий обучения математике, влияющих на реализацию ФГОС является индивидуализация обучения математике.
3. Уточнено понятие индивидуальной образовательной траектории как процесса и результата поэтапного обогащения, становления и развития опыта, личностных и регулятивных характеристик на основе выбора в структуре функционального отражения содержания, форм, методов и средств обучения математике.
4. Выделены этапы проектирования индивидуальных образовательных траекторий: целевой, проектировочный, диагностический, аналитический, содержательный, коррекционный, оценочно-рефлексивный этапы.
5. Разработаны пути решения вопросов индивидуального обучения в 5 классах на основе индивидуальных образовательных траекторий.
6. На основании проведенного эксперимента можно утверждать, что в результате обучения учащихся с использованием проектирования индивидуальных образовательных траекторий в условии обучения математике, знания у обучающихся экспериментальной группы стали более качественными, чем у обучающихся в контрольной группе.
Таким образом, все поставленные задачи исследования решены, цель достигнута, и можно утверждать, что выстраивание индивидуальной образовательной траектории при обучении математике на ступени общеобразовательной школы способствует повышению уровня математической подготовки школьников.



1. Алексеев А.П. Краткий философский словарь. / Г.Г.Васильев. - М.: Проспект, 2008. - 496 с.
2. Асмолов А.Г. Нестандартное образование в изменяющемся мире: культурно-исторические перспективы / М.С. Нырова.- Н.Н.: Мир, 1993. - 768 с.
3. Асмолов А.Г. Стратегия развития вариативного образования: мифы и реальность / А.Г. Асмолов // Магистр. - 1995. - №1. С. - 16
4. Башмаков М.И., Алгебра и начала анализа / М. И. Башмаков // Учебник для 10-11 классов средней школы. 2-е изд. - М.: 1992. - 351 с.
5. Богун В. В., Осташков В. Н., Смирнов Е. И. Наглядное
моделирование в обучении математике: теория и практика [Текст] /В. В. Богун В. Н. Осташков Е. И. Смирнов // Учебное пособие. Под ред. Е. И. Смирнова. Ярославль, 2010.-498 с.
6. Беспалько В.П. Слагаемые педагогической технологии.- М.: Просвещение, 2009. - 192 с
7. Болтянский В. Г, Глейзер Г.Д. К проблеме дифференциации школьного математического образования [Текст] /В.Г. Болтянский Г.Д. Глейзер // Математика в школе. - 1988. - №3. — с. 9-13.
8. Больше чем просто цифры [Электронный ресурс]/Футбольный вечер. - 2013 - Режим доступа: http://www.soccer.ru/blogs/371209.shtml(дата обращения 18.06.2014)
9. Боровских А.В., Розов Н.Х. Деятельностные принципы в
педагогике и педагогическая логика: Пособие для системы
профессионального педагогического образования, подготовки и повышения квалификации научно-педагогических кадров. - М.: МАКС Пресс, 2010. - 80 с.
10. Бороздина И.С. Лингво-когнитивное моделирование реляционных речевых актов: Автореф. Дис. На соискание ученой ст. доктора филологических наук: 10.02.19/КГУ. - Курск., 2012. - 454 с.
11. Виленкин Н.Я., Жохов В.И. Математика 6 класс - М., 2013. - 280 с.
12. Ващенко В. Непрерывное образование: чтобы концепция
заработала// ВВШ, 2010, № 5, с.7.
13. Введение ФГОС основного общего образования как фактор модернизации системы образования СК // Под науч. ред. А.А. Волкова.- Ставрополь: ГБОУ ДПО СКИРО ПК и ПРО, 2012.-170с.
14. Волхова Е.А. Дидактика: конспект лекций/ Юкина И.В. - Ростов на Дону.: Феникс, 2004. - 288 с.
15. Выготский, Л.С. К вопросу о динамике детского характера [Текст] /Л.С. Выготский // Сборник: Педология и воспитание, М., 1928.
16. Глоссарий [Электронный ресурс] — Режим доступа: http: //www. edu.ru.
17. Галацкова И.А. Психолого-педагогическое обеспечение вариативных образовательных маршрутов учащихся в массовой школе / И.А. Галацкова // Вестник БФУ им. И. Канта. - 2009. - №11. С. - 113-120.
18. Гребенков И.В., Чупрунов Е.В. Теория обучения и моделирования учебного процесса / И.В. Гребенков Е.В. Чупрунов // Вестник Нижегородского университета им. Н.И. Лобачевского. - 2007. - №1. С. - 28 - 32
19. Гуревич П.С. Психология личности: учебное пособие. - М.:Юнити-Дана, 2011. - 560 с.
20. Давыдов В.В. Теория развивающего обучения. - СПб.: Питер, 2011. - 544 с.
21. Джуринский А. Н. История педагогики и образования: Учебное пособие для студентов педвузов. - М.: Юрайт-Издат, 2012. - 688 с.
22. Дубовицкая Т.Д. Психологическая диагностика в контекстном обучении. - М.: РИЦ МГОПУ им. М.А. Шолохова, 2003. - 45 с.
23. Жемулин С. А. Моделирование учебной деятельности учащихся при прoектирoвании образовательного процесса в школе [Текст] /С.А. Жемулин// Автореферат диссертации ... канд. пед. наук. — Ярославль, 2008. — 21 с.
24. Закон Российской Федерации «Об образовании» [Текст] — 13-е изд. — М.: «Ссь-89», 2007. — 96 с. (Федеральный закон).
25. Зверева Н.Г. Проектирование индивидуальных образовательных маршрутов студентов педвуза на основе комплексной психолого-педагогической диагностики [Текст] /Н.Г. Зверева // Автореф. дис: канд. пед. наук.— Ярoславль: 2007.— 24 с.
26. Зеленина Е.Б. Развитие познавательной активности школьников: педагогическая тактика и стратегия реализации ФГОС в основной школе // Учитель приморья.- 2012.- № 5.- С. 5-8.
27. Ильин Е.П. Мотивация и мотивы. - СПб.:Питер, 2013. - 508 с.
28. Ильина, Н.Ф. Индивидуальная образовательная программа как
средство организации образования педагогов при решении проблем индивидуализации обучения [Электронный ресурс]/ Н.Ф. Ильина // Режим доступа:http://www.cross-ipk.ru.
29. К вопросу об обучении школьников по индивидуальным траекториям образовательного маршрута. [Электронный ресурс]. -2013 - Режим доступа:http: //uipk. narod.ru/diskons/nach/nach 4doc
30. Камалеева А.Р., Нургазизова Э.Ф. Теоретические основы моделирования педагогических систем / А.Р. Камалеева Э.Ф. Нургазизова // Вестник Челябинского государственного педагогического университета. - 2010. - № 1. С. - 114 - 127.
31. Касицина Н., Михайлова Н., Юсфин С. Четыре тактики педагогики поддержки. Эффективные способы взаимодействия учителя и ученика.- СПб.: Речь, 2010.- 160 с.
32. Кларин М.В. Технология обучения. Идеал и реальность.- СПб.: Питер, 2011.- 180 с.
33. Концепция модернизации российского образования на период до 2015 года (распоряжение Правительства РФ от 29.12.2001 № 1756-р).
34. Корнетов Г.Б. Педагогика. Теория и история. - М.: УРАО, 2011.-296 с.
35. Корчагина И. Р. Деятельностный подход как парадигма модернизации современного школьного образования [Текст] / И. Р. Корчагина // Молодой ученый. — 2012. — №11. — С. 435-437.
36. Концепция долгосрочного сoциальнo-экoнoмическoгo развития Российской Федерации на период дo2020 года, п.3.3 Развитие образования.
37. Концепция профильного обучения на старшей ступени общего образования [Текст] // Официальные документы в образовании — 2002. — № 27, с. 13-33.
38. Концепция федеральных государственных образовательных
стандартов общего образования. Под редакцией A.M. Кондакова, A.A. Кузнецова, [Текст]/ A.M. Кондаков, A.A. Кузнецов // М.: Просвещение, 2008. - 36 с.
39. Кулешoва Г. Индивидуальная образовательная траектория: твой путь в образовании [Электронный ресурс]/Г. Кулешoва // Режим доступа: http: //www. e-traj ectory. ru
40. Кулисевич Г. Проблемы непрерывного образования// ВВШ, 2012, № 1, с. 89.
41. Литература для студента [Электронный ресурс]/Классификация
методов обучения. - 2014. - Режим доступа:
http://libsib.ru/pedagogika/shpargalka-po-pedagogike-dlya-pedagogov/42- klassifikatsiya-metodov-obucheniya(дата обращения 9.06.2016)
42. Левитес Д.Г. Автодидактика: Теория и практика конструирования собственных технологий обучения.- М.: МПСИ, 2009.- 320 с.
43. Леднев В.С. Содержание образования: сущность, структура, перспективы.- Спб.: Питер, 2011.- 224 с.
44. Леонтьев А.Н. Становление психологии деятельности.- М.: Смысл, 2013.- 440 с.
45. Логинова Ю.Н. Понятие индивидуального образовательного маршрута и индивидуальной образовательной траектории и проблема их проектирования [Текст] /Ю.Н. Логинова // Библиотека журнала Методист. 2006. №9.-С. 4-7.
46. Лукьяненко О. Д. Обратная связь в дидактическом информационном взаимодействии педагога и учащихся/ О. Д. Лукьяненко//Известия Российского государственного педагогического университета им. А. И. Герцена. - 2007. - №33. С.-12.
47. Маркина И.В. Современный урок. Технологии, приемы, разработки учебных занятий.- Ярославль: Академия Развития, 2009.- 288 с.
48. Маслов В.И., Зволинская Н.Н., Корнилов В.М. Непрерывное образование: подходы к сущности.
49. Национальная образовательная инициатива «Наша новая школа» (утверждена приказом Президента РФ от 04.02.2010 № 271).
50. Новая философская энциклопедия / [В. Степин, Г. Семигин и др.].- М.: Мысль, 2010.- 2816.
51. Писарев Д. И. Избранные педагогические сочинения. М., 2010. с. 290.
52. Примерная основная образовательная программа
образовательного учреждения. Основная школа / сост. Е. Савинов.- М.: Просвещение, 2014.- 352с.
53. Примерные программы по учебным предметам. Математика. 5-9 класс / сост. Н. Евстигнеева.- М.: Просвещение, 2011.- 64 с.
54. Российский общеобразовательный портал [Электронный ресурс] - Режим доступа: http://www.school.edu.ru/dok_edu.asp7ob_noM9811(дата обращения: 30.09.2015)
55. Садовничий В.А. О математике и ее преподавании в школе: докл. на Всероссийском съезде учителей математики, Москва, 28 октября 2010 года. М., 2010. С. 10.
56. Саймон Б. Общество и образование. М., 2010, с. 94.
57. Свидерский В.И. О диалектике элементов и структуры в объективном мире и в познании - М., 1962. - 275 с.
58. Селевко Г.К. Технологии развивающего образования.- М.: Астрель, 2010.- 192 с.
59. Уемов А.И. Системный подход и общая теория систем.- М.: Книга по Требованию, 2012.- 272 с.
60. Федеральный закон от 29.12.2012 N 273-ФЗ (ред. от 21.07.2014) «Об образовании в Российской Федерации» (с изм. и доп., вступ. в силу с 21.10.2014) // Российская газета.- 2012.- № 303.
61. Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации».
62. Фридман Л. «Учитесь учиться математике». М., 2013.
63. Чеботарева Н.А. Вариативные образовательные маршруты в условиях реализации ФГОС/ Н.А. Чеботарева// Молодежь и наука XXI века.- 2014.- в печати.
64. Чеботарева Н.А. Реализация вариативности содержания в процессе обучения математике в общеобразовательной школе/ Н.А. Чеботарева//Молодежь и наука XXI века.- 2012.- том 2. С.-105-107.
65. Ширикова Т.С. Проблема сближения содержания школьного курса математики с передовыми рубежами науки // Вестник Северного (Арктического) федерального университета. Серия: Гуманитарные и социальные науки.- 2012.- №3.- С.141-145.
66. Щукина Г.И. Активизация познавательной деятельности учащихся в учебном процессе. - М.: Просвещение, 2011. - 160с.
67. Якиманская И.С. Личностно-ориентированное обучение в современной школе [Текст] / И.С. Якиманская //Москва: Сентябрь, 1996. — 96 с.
68. Ярдухина С.А. Информационная обогащенность образовательной среды как средство формирования профессионально-математической компетентности будущих преподавателей математики (для системы классических университетов) [Текст] / С.А. Ярдухина // дисс. ... канд.пед.наук: 13.00.02, Чебоксары, 2009. - 229 с


Работу высылаем на протяжении 30 минут после оплаты.



Подобные работы


©2025 Cервис помощи студентам в выполнении работ