Тип работы:
Предмет:
Язык работы:


Высокотемпературная кристаллохимия природных оксосульфатов меди

Работа №141763

Тип работы

Бакалаврская работа

Предмет

геология и минералогия

Объем работы53
Год сдачи2023
Стоимость4610 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
29
Не подходит работа?

Узнай цену на написание


Введение 3
Глава 1. Литературный обзор 6
Глава 2. Методы исследования 15
2.1 Высокотемпературная монокристальная рентгеновская дифракция 17
2.2 Высокотемпературная порошковая рентгеновская дифракция 17
Глава 3. Результаты терморентгенографических исследований 18
3.1 Высокотемпературная кристаллохимия халькокианита 18
3.1.1 Монокристальнаярентгеновская дифракция 18
3.1.2 Порошковая рентгеновская дифракция 22
3.2 Высокотемпературная кристаллохимия долерофанита 25
3.2.1 Монокристальнаярентгеновская дифракция 25
3.2.2 Порошковая рентгеновская дифракция 29
3.3 Высокотемпературная кристаллохимия камчаткита 32
3.3.1 Монокристальнаярентгеновская дифракция 32
Глава 4. Обсуждение результатов 38
Выводы 42
Список литературы 43
Приложения 49

Фумарольные поля вулкана Толбачик (п-ов Камчатка, Россия) привлекают всё больше внимания исследователей. Уникальные физико-химические условия фумарол окислительного типа, высокие градиенты температур совместно с широким спектром халькофильных элементов (S, Cu, Zn, Pb, Bi, As, Se и др.) приводят к кристаллизации богатейших (и часто уникальных) минеральных ассоциаций. Рекордсменами по числу открытых минеральных видов являются фумаролы Второго конуса Большого Трещинного Толбачинского Извержения (БТТИ), в которых среди прочих халькофильных элементов наибольшее распространение получила медь. В пределах Второго конуса описано несколько крупных фумарол, наибольшую известность из которых получила фумарола «Ядовитая». В разрезе фумаролы четко прослеживается так называемая «сульфатная зона», для которой характерна минеральная ассоциация, отличающаяся широким разнообразием сульфатов меди. К типичным минералам этой зоны относятся: тенорит CuO, халькокианит CuSO4, эвхлорин KNaCu3(SO4)3O, долерофанит Cu2(SO4)O, ключевскит K3Cu3Fe(SO4)4O2, алюмоключевскит K3Cu3Al(SO4)4O2, вергасоваит Cu3(SO4)(MoO4,SO4)O, камчаткит KCu3(SO4)2OCl.
Большинство из перечисленных минералов образуются и остаются стабильными только в условиях фумарол. Среди факторов, определяющих их устойчивость, исследователи выделяют температуру и влажность. В работах проф. С.К. Филатова, его коллег и учеников изучены, а часто и открыты, многие фумарольные минералы. Используя метод порошковой терморентгенографии им удалось получить большой объем данных о фазовой устойчивости, температурах плавления и параметрах теплового расширения минералов.
Настоящая работа продолжает исследования научной группы С.К. Филатова, посвященные терморентгенографии безводных сульфатов меди. Развитие приборной базы позволяет дополнить ранее полученные данные и изучить высокотемпературную кристаллохимию минералов с применением мощного аппарата монокристальной рентгеновской дифракции.
В работе описаны результаты исследования трех минералов: халькокианита CuSO4, долерофанита Cu2(SO4)O и камчаткита KCu3(SO4)2OCl, отобранных из сульфатной зоны фумаролы «Ядовитая» Е.В. Назарчуком во время экспедиции на Второй шлаковый конус вулкана Толбачик.
Актуальность. Высокотемпературные исследования имеют большое значение для изучения и моделирования процессов образования и преобразования фумарольных минералов. Развитие новых подходов к разработке источников питания, необычные магнитные свойства минералов меди, использование минералов как прототипов новых материалов резко увеличили интерес ученых к безводным сульфатам. Кристаллизация этих минералов происходит из газовой фазы в сравнительно высокотемпературных условиях (400-800оС). Это обстоятельство с одной стороны позволяет получить уникальные соединения, а с другой делает изучение высокотемпературной кристаллохимии этих минералов весьма важным. Важно не только изучение теплового расширения минералов, но и фазовых превращений в градиенте температур.
Цели и задачи. Целью работы является изучение термического расширения трёх безводных сульфатов меди: халькокианита CuSO4, долерафонита Cu2(SO4)O и камчаткита KCu3(SO4)2OCl методами высокотемпературной монокристальной и порошковой рентгеновской дифракции.
Для достижения этой цели были поставлены и решены следующие задачи:
• Отбор мономинеральных образцов халькокианита, долерофанита и камчаткита. Съемка и обработка эталонных рентгенограмм.
• Проведение монокристальных и порошковых терморентгенографических экспериментов.
• Уточнение кристаллических структур минералов в градиенте температур.
• Установление механизмов теплового расширения минералов.
При проведении исследований использовано оборудование Ресурсного центра СПбГУ «Рентгенодифракционные методы исследования»
Публикации. Результаты настоящей работы были представлены на конференции Современные проблемы теоретической, экспериментальной и прикладной минералогии (Юшкинские чтения) в 2022 году, а также в 2023 году опубликованы в международном журнале Physics and Chemistry of Minerals...

Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


Методами порошковой и монокристальной дифракции проведены терморентгенографические исследования халькокианита, долерофанита и камчаткита. Определены температуры плавления и продукты термического разложения минералов. Выявлены особенности теплового расширения минералов и предложен способ его аппроксимации.
1. Халькокианит устойчив до температуры 950±10К. Тепловое расширение минерала резко анизотропно (ац= 7.36, «22 = 31.85, азз = 2.36*10-6К-1). Главные значения тензора теплового расширения практически не меняются вплоть до температуры плавления. В направлении наибольшего теплового расширения в структуре минерала вытянуты цепочки, построенные объединением полиэдров СиОб по ребру. Анизотропия изменения длин связей в октаэдрах СиОб обеспечивает неравномерное расширение структуры минерала.
2. Долерофанит устойчив до температуры 910±10К. Тепловое расширение минерала резко анизотропно (ац = -2.14, «22 = 12.21, азз = 18.1, ар = 5.96*10-6К-1). Главные значения тензора теплового расширения незначительно уменьшаются вплоть до температуры плавления (ац = -2.14^ -2.32, а22 = 12.21^ 12.20, азз = 18.1^ 18.0, ар = 5.96> 5.94*10-6К-1). Особенности теплового расширения минерала объясняются анизотропией изменения длин связей в слоях [Си2О]2+.
3. Камчаткит устойчив до температуры 590 ±10К. Тепловое расширение минерала анизотропно (ац = 24.41, а22 = 2.80, азз = 7.6*10-6К-1). Значение ац уменьшается (24.41>24.26), а а22 и азз остаются неизменными вплоть до температуры плавления. Анизотропия теплового расширения камчаткита объясняется сдвиговыми деформациями его кристаллической структуры.
4. Длины связей и объемы сульфатных тетраэдров и полиэдров ОСи4 практически не меняются с увеличением температуры. Большой вклад в анизотропию теплового расширения минералов вносят изменения длин связей в полиэдрах меди и щелочных катионов, а также изменения углов между координационными полиэдрами.


1. Бубнова Р.С., Кржижановская М.Г., Филатов С.К. Практическое руководство по терморентгенографии поликристаллов Ч. I: Осуществление эксперимента и интерпретация полученных данных // Издительство СПбГУ. 2011, 70с.
2. Вергасова Л.П., Черепова Т.А. К характеристике минералов меди Большого трещинного Толбачинского извержения // Бюллетень вулканологических станций. 1979, 56, 178-186.
3. Вергасова Л.П., Филатов С.К., Серафимова Е.К., Старова Г.Л. Пийпит K2Cu2O(SO4)2 - новый минерал из вулканических возгонов // Доклады АН СССР. 1984, 275, 3, 714-717.
4. Вергасова Л.П., Филатов С.К., Серафимова Е.К., Вараксина Т.В. Камчаткит KCu3OCl(SO4)2 - новый минерал из вулканических возгонов // Записки ВМО. 1988а, 117, 459-461.
6. Вергасова Л.П., Филатов С.К., Серафимова Е.К., Семенова Т.Ф. Пономаревит K4Cu4OCl 10 — новый минерал из вулканических возгонов // Доклады АН СССР. 19886, 300, 5, 1197-1200.
7. Вергасова Л.П., Филатов С.К., Серафимова Е.К. Старова Г.Л. Федотовит K2Cu3O(SO4)3 — новый минерал из вулканических возгонов // Доклады АН СССР. 1988в, 299, 4, 961-964.
8. Вергасова Л.П., Филатов С.К., Горская М.Г. Ананьев В.В., Шаров А.С. Ключевскит KsCu3Fe3+O2(SO4)4 — новый минерал из вулканических возгонов // Записки ВМО. 1989а, 118, 1, 70-73.
9. Вергасова Л.П., Филатов С.К., Семенова Т.Ф. Философова Т.М. Софиит Zn2(SeO3)Cl2 — новый минерал вулканических возгонов // Записки ВМО. 1989б, 118, 1, 65-69.
10. Вергасова, Л.П., Филатов С.К., Семенова Т.Ф., Ананьев В.В. Ленинградит PbCu3(VO4)2Cl2 — новый минерал из вулканических возгонов // Доклады АН СССР. 1990, 310, 6, 1434-1437.
11. Вергасова Л.П., Филатов С.К. Минералы вулканических эксгаляций — особая генетическая группа (по материалам Толбачинского извержения 1975—1976 гг.) // Записки ВМО. 1993, 122, 4, 68-76.
12. Вергасова Л.П., Семенова Т.Ф., Филатов С.К. Шувалов Р.Р. Ильинскит NaCu5O2(SeOs)2Cl3 — новый минерал вулканических эксгаляций // Доклады АН. 1997, 353,
13. 641-644.
14. Вергасова Л.П., Старова Г.Л., Филатов С.К. Ананьев В.В. Аверьевит Cus(VO4)2O2X nMX - новый минерал вулканических эксгаляций // Доклады АН. 1998, 359, 6, 804-807.
15. Вергасова Л.П., Семенова Т.Ф., Филатов С.К. Кривовичев С.В., Шувалов Р.Р., Ананьев В.В. Георгбокиит Си5О2(ЗеОз)2С12 - новый минерал вулканических эксгаляций // Доклады АН. 1999, 364, 4, 527-531...(76)


Работу высылаем на протяжении 30 минут после оплаты.



Подобные работы


©2025 Cервис помощи студентам в выполнении работ