ПЕРЕЧЕНЬ УСЛОВНЫХ СОКРАЩЕНИЙ 3
ВВЕДЕНИЕ 4
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ 6
1.1. Галоген-литиевый обмен 6
1.1.1. Механизмы обмена галогена на литий 6
1.1.2. Общие сведения об однократном галоген-литиевом обмене 8
1.1.3. Многократный обмен галоген-литий 14
1.2. С-Н литиирование 17
ГЛАВА 2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 25
2.1. Получение пери- дилитий-1,8-бис(диметиламино)нафталина и
исследование его реакционной способности 25
2.2. Исследование галоген-литиевого обмена в полибром-пери-
диаминонафталинах 30
ГЛАВА 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 49
3.1. Общие сведения 49
3.2. Методики получения соединений 50
РЕЗУЛЬТАТЫ И ВЫВОДЫ 67
БЛАГОДАРНОСТИ 69
ПРИЛОЖЕНИЕ 1 70
ПРИЛОЖЕНИЕ 2 90
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 93
В современной химии литийорганические соединения являются незаменимым инструментом органического синтеза: обработка подходящими реагентами позволяет строить связи между углеродом и почти каждым элементом периодической таблицы и вводить в углеродное ядро самые разнообразные функциональные группы [1-9]. Ввиду своей универсальности литийорганические реагенты используются для целей молекулярного дизайна [10-13], полного синтеза [14], получения новых материалов [15]. Понимание закономерностей, лежащих в основе методов синтеза и реакционной способности литийорганических соединений, позволяет рационально осуществлять получение литийорганических соединений.
Самые распространенные методы получения литийорганических соединений - галоген-литиевый обмен и прямое С-Н литиирование. Последний метод наиболее интересен в настоящее время, поскольку он позволяет получать литийорганические соединения напрямую, минуя стадию синтеза органилгалогенида. К настоящему времени известны три основных эффекта, контролирующие региоселективность образования литийорганических соединений: наличие направляющей группы, стерическая доступность, эффективность «электронного слива» (англ. electron sink).
За последние девять десятилетий указанные особенности были исследованы в ряду производных бензола весьма подробно [2]. Однако имеется лишь небольшой круг работ, посвященных изучению факторов образования и стабилизации конденсированных литийаренов, а работ в области полилитийаренов и вовсе единицы (см. литературный обзор). При этом литийорганические реагенты на основе конденсированных аренов играют важную роль в получении структурно жестких систем. К последним, например, относятся производные 1,8-бис(диметиламино)нафталина, также известного как «протонная губка» - сильные малонуклеофильные органические основания, широко применяемые в прикладной химии и в фундаментальных исследованиях явления прочных водородных связей [16¬24].
Вышесказанное определяет цель настоящей работы: исследовать особенности синтеза и реакционной способности полилитий производных 1,8- бис(диметиламино)нафталина и родственных соединений.
Для достижения поставленной цели были поставлены следующие задачи:
1. Изучить возможность второго металлирования 4-литий-1,8-
бис(диметиламино)нафталина для получения 4,5-дилитий-1,8-
бис(диметиламино)нафталина и исследовать реакционную способностьпоследнего;
2. Изучить галоген-литиевый обмен в 2,4,5,7-тетрабром-1,8-
бис(диметиламино)нафталине и 4,6,7,9-тетрабром-2,3-дигидро-7.Н-перимидине и установить факторы, влияющие на порядок и селективность этого обмена.
Работа состоит из литературного обзора, посвященного методам синтеза полициклических литийаренов, обсуждения полученных в ходе выполнения работы результатов и экспериментальной части, в которой представлены детальные методики получения всех исследованных в работе соединений.
1. Изучен процесс второго литиирования литийнафталина 27. Показано, что реакция протекает селективно с образованием пери- дилитийнафталина 23.
2. Полученный дилитийнафталин 23 был использован для синтеза 12 пери- дизамещенных нафталиновых «протонных губок» с хорошим выходом
3. Исследован процесс галоген-литиевого обмена в диамине 45 и
дигидроперимидине 46. Предложено объяснение региоселективности обмена в обоих субстратах, включающее влияние следующих эффектов: 1) стерическое напряжение молекул; 2) координация атома лития направляющими группами, а также 3) эффект сопряжения алкиламиногруппы с ароматической системой.
4. Впервые установлено определяющее влияние эффекта сопряжения на порядок и селективность галоген-литиевого обмена.
5. Получены первые представители семейства тетралитийнафталинов 59b и 65b.
6. Продемонстрирована возможность одновременной четырехкратной функционализации при взаимодействии тетралитийнафталинов 59b и 65b
1. Wietelmann U., Klett J. 200 Years of Lithium and 100 Years of Organolithium Chemistry // Zeitschrift fur Anorg. und Allg. Chemie. John Wiley & Sons, Ltd, 2018. Vol. 644, № 4. P. 194-204.
2. Schlosser M. Organoalkali Chemistry // Organometallics in Synthesis: A Manual. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. P. 1-352.
3. Valnot J.-Y., Maddaluno J. Aspects of the Synthesis, Structure and Reactivity of Lithium Enolates // PATAI’S Chemistry of Functional Groups. Chichester, UK: John Wiley & Sons, Ltd, 2009. P. 122.
4. Schlosser M. Superbases for organic synthesis // Pure Appl. Chem. De Gruyter, 1988. Vol. 60, № 11. P. 1627-1634.
5. Snieckus V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics // Chem. Rev. American Chemical Society, 1990. Vol. 90, № 6. P. 879-933.
6. Hunt D.A. Michael addition of organolithium compounds. A review // Org. Prep. Proced. Int. Taylor & Francis Group, 1989. Vol. 21, № 6. P. 705-749.
7. Baskaran D., Muller A.H.E. Anionic Vinyl Polymerization // Controlled and Living Polymerizations: From Mechanisms to Applications. John Wiley & Sons, Ltd, 2010. P. 1-56.
8. Luisi R., Capriati V. Lithium Compounds in Organic Synthesis: From Fundamentals to Applications / ed. Luisi R., Capriati V. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. Vol. 9783527333. 545 p.
9. Majewski M. Organolithiums in Enantioselective Synthesis // Advanced Synthesis & Catalysis / ed. Hodgson D.M. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. Vol. 347, № 5. 719-720 p.
10. Rey Y.P. et al. Molecular Design Exploiting a Fluorine gauche Effect as a Stereoelectronic Trigger // European J. Org. Chem. 2014. Vol. 2014, № 6. P. 1202-1211.
11. Meyer F. et al. Bis(6-diphenylphosphino-acenaphth-5-yl)sulfoxide: A New Ligand for Late Transition Metal Complexes // Eur. J. Inorg. Chem. Wiley-VCH Verlag, 2020. Vol. 2020, № 40. P. 3829-3836.
12. Eda S., Hamura T. Selective halogen-lithium exchange of 1,2-dihaloarenes for successive [2+4] cycloadditions of arynes and isobenzofurans // Molecules. Multidisciplinary Digital Publishing Institute (MDPI), 2015. Vol. 20, № 10. P. 19449¬19462.
13. Yan X., Jiang J., Wang J. A Class of Readily Tunable Planar-Chiral Cyclopentadienyl Rhodium(III) Catalysts for Asymmetric C-H Activation // Angew. Chemie Int. Ed. 2022. Vol. 61, № 23.
14. Chinchilla R., Najera C., Yus M. Functionalized organolithium compounds in total synthesis // Tetrahedron. 2005. Vol. 61, № 13. P. 3139-3176.
15. Quirk R.P., Chen W.-C. Functionalization of polymeric organolithium compounds. Oxidation // J. Polym. Sci. Polym. Chem. Ed. 1984. Vol. 22, № 11. P. 2993-3000.
16. Alder R.W. et al. The remarkable basicity of 1,8-bis(dimethylamino)naphthalene // Chem. Commun. The Royal Society of Chemistry, 1968. Vol. 0, № 13. P. 723-724.
17. Antonov A.S. et al. Ortho-ketimines of 1,8-bis(dimethylamino)naphthalene: Synthesis, hydrolytic stability and transfer of basicity from proton sponge moiety to the imino function // Synthesis (Stuttg). 2014. Vol. 46, № 23. P. 3273-3282.
18. Antonov A.S. et al. Reaction of 2-trifluoroacetyl-1,8-Bis(dimethylamino)naphthalene with strong organic bases: Deprotonation of 1-NMe2 group resulting in the formation of Benzo[g]indole derivatives versus nucleophilic addition to C[dbnd]O group // Tetrahedron. Elsevier Ltd, 2017. Vol. 73, № 25. P. 3452-3457.
19. Antonov A.S. et al. Ring lithiation of 1,8-bis(dimethylamino)naphthalene: Another side of the “proton sponge coin” // Dalt. Trans. 2015. Vol. 44, № 40. P. 17756-17766.
20. Schneider E.M. et al. Magnetic superbasic proton sponges are readily removed and permit direct product isolation // J. Org. Chem. American Chemical Society, 2014. Vol. 79, № 22. P. 10908-10915.
21. Corma A. et al. Immobilized proton sponge on inorganic carriers: The synergic effect of the support on catalytic activity // J. Catal. Academic Press, 2002. Vol. 211, № 1. P. 208-215.
22. Cao D. et al. Proton sponge-functionalized silica as high performance adsorbents for solid-phase extraction of trace perfluoroalkyl sulfonates in the environmental water samples and their direct analysis by MALDI-TOF-MS // Analyst. The Royal Society of Chemistry, 2012. Vol. 137, № 9. P. 2218-2225.
23. Gianotti E. et al. Designing bifunctional acid-base mesoporous hybrid catalysts for cascade reactions // Catal. Sci. Technol. The Royal Society of Chemistry, 2013. Vol. 3, № 10. P. 2677-2688.
24. Gianotti E. et al. Hybrid organicinorganic catalytic mesoporous materials with proton sponges as building blocks // Phys. Chem. Chem. Phys. The Royal Society of Chemistry, 2011. Vol. 13, № 24. P. 11702-11709.
25. Ziegler K., Colonius H. Untersuchungen uber alkali-organische Verbindungen. V. Eine bequeme Synthese einfacher Lithiumalkyle // Justus Liebig’s Ann. der Chemie. 1930. Vol. 479, № 1. P. 135-149.
26. Bailey W.F., Patricia J.J. The mechanism of the lithium - halogen Interchange reaction : a review of the literature // J. Organomet. Chem. Elsevier, 1988. Vol. 352, № 1-2. P. 1-46.
27. Bryce-Smith D. 318. Organometallic compounds of the alkali metals. Part VI. Evidence for the formation of free alkyl radicals during certain Wurtz reactions. Homolytic reactions between alkyl-lithium compounds and alkyl halides // J. Chem. Soc. The Royal Society of Chemistry, 1956. № 0. P. 1603-1610.
28. Fischer H. Electron spin resonance of transient alkyl radicals during alkyllithium-alkyl halide reactions // J. Phys. Chem. American Chemical Society, 1969. Vol. 73, № 11. P. 3834-3838.
29. Sunthankar S. V., Gilman H. Halogen-metal interconversion and metalation in the naphthalene series // J. Org. Chem. American Chemical Society, 1951. Vol. 16, № 1. P. 8-16.
30. Farnham W.B., Calabrese J.C. Novel Hypervalent (10-I-2) Iodine Structures // J. Am. Chem. Soc. American Chemical Society , 1986. Vol. 108, № 9. P. 2449-2451.
31. Havel J.J. The chemistry of organolithium compounds (Wakefield, B. J.) // J. Chem. Educ. Pergamon Press, 1975. Vol. 52, № 11. P. A525.
32. Rogers H.R., Houk J. Preliminary Studies of the Mechanism of Metal-Halogen Exchange. The Kinetics of Reaction of n-Butyllithium with Substituted Bromobenzenes in Hexane Solution // J. Am. Chem. Soc. American Chemical Society, 1982. Vol. 104, № 2. P. 522-525.
33. Huang W. et al. Bimetallic cleavage of aromatic C-H bonds by rare-earth-metal complexes // J. Am. Chem. Soc. American Chemical Society, 2014. Vol. 136, № 50. P.
17410-17413.
34. Naruto H., Togo H. Preparation of 2-arylquinolines from 0-arylpropionitriles with aryllithiums and NIS through iminyl radical-mediated cyclization // Org. Biomol. Chem. Royal Society of Chemistry, 2019. Vol. 17, № 23. P. 5760-5770.
35. Jung H. et al. Palladium-catalyzed cross-coupling reactions of dithienosilole with indium reagents: Synthesis and characterization of dithienosilole derivatives and their application to organic light-emitting diodes // Organometallics. American Chemical Society, 2010. Vol. 29, № 12. P. 2715-2723.
36. Yoshida T. et al. N-Methylphenothiazine S-Oxide Enabled Oxidative C(sp2)-C(sp2) Coupling of Boronic Acids with Organolithiums via Phenothiaziniums // Org. Lett. 2021. Vol. 23, № 24. P. 9664-9668.
37. Chen J., Hayashi T. Asymmetric Synthesis of Alkylzincs by Rhodium-Catalyzed Enantioselective Arylative Cyclization of 1,6-Enynes with Arylzincs // Angew. Chemie Int. Ed. 2020. Vol. 59, № 42. P. 18510-18514.
38. Deshpande P.P. et al. Remarkable 0-selectivity in the synthesis of 0-1-C-
arylglucosides: Stereoselective reduction of acetyl-protected methyl 1-C-
arylglucosides without acetoxy-group participation // J. Org. Chem. 2007. Vol. 72, № 25. P. 9746-9749.
39. Chen W. et al. Direct a-C-H bond functionalization of unprotected cyclic amines // Nat. Chem. 2018. Vol. 10, № 2. P. 165-169.
40. Andres R., Wang Q., Zhu J. Catalytic Enantioselective Pictet-Spengler Reaction of a- Ketoamides Catalyzed by a Single H-Bond Donor Organocatalyst // Angew. Chemie - Int. Ed. John Wiley and Sons Inc, 2022. Vol. 61, № 19.
41. Pullmann T. et al. Quinaphos and Dihydro-Quinaphos Phosphine-Phosphoramidite Ligands for Asymmetric Hydrogenation // Chem. - A Eur. J. 2010. Vol. 16, № 25. P. 7517-7526.
42. Ishikawa S. et al. Synthesis of Naphthaleman Family Utilizing Regiocontrolled Benzannulation: Unique Molecules Composed of Multisubstituted Naphthalenes // ACS Omega. American Chemical Society, 2021. Vol. 6, № 48. P. 32682-32694.
43. Gao B. et al. SuFEx Chemistry of Thionyl Tetrafluoride (SOF4) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates // Angew. Chemie - Int. Ed. 2018. Vol. 57, № 7. P. 1939-1943.
44. Varga B. et al. Enantioseparation of P -Stereogenic Secondary Phosphine Oxides and Their Stereospecific Transformation to Various Tertiary Phosphine Oxides and a Thiophosphinate // J. Org. Chem. 2021. Vol. 86, № 21. P. 14493-14507.
45. Li Q. et al. Synthesis, Characterization and Luminescent Properties of Copper(I) Halide Complexes Containing 1-(Diphenylphosphino)naphthalene // J. Inorg. Organomet. Polym. Mater. 2017. Vol. 27, № S1. P. 101-109.
46. Asby D.J. et al. Triggering apoptosis in cancer cells with an analogue of cribrostatin 6 that elevates intracellular ROS // Org. Biomol. Chem. 2016. Vol. 14, № 39. P. 9322¬9330.
47. Oppong-Quaicoe A.A., DeBoef B. FeCl 2 -Mediated Rearrangement of Allylic Alcohols // ACS Omega. 2019. Vol. 4, № 3. P. 6077-6083.
48. Schweizer S., Becht J.-M., Le Drian C. Highly efficient reusable polymer-supported Pd catalysts of general use for the Suzuki reaction // Tetrahedron. 2010. Vol. 66, № 3. P. 765-772.
49. Bailey W.F., Luderer M.R., Jordan K.P. Effect of solvent on the lithium-bromine exchange of aryl bromides: Reactions of n-butyllithium and tert-butyllithium with 1- bromo-4-tert- butylbenzene at 0 °C // J. Org. Chem. 2006. Vol. 71, № 7. P. 2825-2828.
50. Holstein P.M. et al. Efficient Pd0-Catalyzed Asymmetric Activation of Primary and Secondary C-H Bonds Enabled by Modular Binepine Ligands and Carbonate Bases // ACS Catal. 2015. Vol. 5, № 7. P. 4300-4308.
51. Lipshutz B.H., Siegmann K., Garcia E. “Kinetic” higher order cyanocuprates: applications to biaryl synthesis // J. Am. Chem. Soc. 1991. Vol. 113, № 21. P. 8161¬8162.
52. Pal A., Thakur A. One-pot synthesis of dimerized arenes and heteroarenes under mild conditions using Co(I) as an active catalyst // Org. Biomol. Chem. The Royal Society of Chemistry, 2022. Vol. 20, № 45. P. 8977-8987.
53. Hoffend C. et al. Effects of boron doping on the structural and optoelectronic properties of 9,10-diarylanthracenes // Dalt. Trans. 2013. Vol. 42, № 38. P. 13826.
54. Denmark S.E. et al. Development of Chiral Bis-hydrazone Ligands for the Enantioselective Cross-Coupling Reactions of Aryldimethylsilanolates // J. Org. Chem. 2015. Vol. 80, № 1. P. 313-366.
55. Nguyen T.T.T. et al. Chiral Ligand-Mediated Nucleophilic Aromatic Substitution of Naphthoic Acids: A Fast and Efficient Access to Axially Chiral Biaryls // European J. Org. Chem. John Wiley & Sons, Ltd, 2020. Vol. 2020, № 25. P. 3829-3833.
56. Furgal J.C., Laine R.M. Nucleophilic Attack of R-lithium at Tetrahedral Silicon in Alkoxysilanes. An Alternate Mechanism // Bull. Chem. Soc. Jpn. 2016. Vol. 89, № 6. P. 705-725.
57. Hornillos V. et al. Catalytic Direct Cross-Coupling of Organolithium Compounds with Aryl Chlorides // Org. Lett. 2013. Vol. 15, № 19. P. 5114-5117.
58. Vila C. et al. Palladium-Catalysed Direct Cross-Coupling of Organolithium Reagents with Aryl and Vinyl Triflates // Chem. - A Eur. J. 2014. Vol. 20, № 41. P. 13078¬13083.
59. Giannerini M. et al. Hindered Aryllithium Reagents as Partners in Palladium-Catalyzed Cross-Coupling: Synthesis of Tri- and Tetra- ortho -Substituted Biaryls under Ambient Conditions // Angew. Chemie Int. Ed. 2013. Vol. 52, № 50. P. 13329-13333.
60. Devillard M. et al. A Stable but Highly Reactive Phosphine-Coordinated Borenium: Metal-free Dihydrogen Activation and Alkyne 1,2-Carboboration // Angew. Chemie Int. Ed. 2015. Vol. 54, № 19. P. 5722-5726.
61. Katz H.E. New Methods for the Synthesis of Proximally Functionalized Arylboranes and -silanes // Organometallics. 1986. Vol. 5, № 11. P. 2308-2311.
62. Durka K. et al. Expedient Synthesis of Oxaboracyclic Compounds Based on Naphthalene and Biphenyl Backbone and Phase-Dependent Luminescence of their Chelate Complexes // Chem. - A Eur. J. 2022. Vol. 28, № 14.
63. Zhang S. et al. Piperazine multi-substituted triarylphosphine oxide compound as an instant “light-up” fluorescent probe for monoamine oxidase // Talanta. 2020. Vol. 209. P. 120559.
64. Jastrzebski J.T.B.H. et al. Directed ortho-Lithiation: Observation of an Unexpected 1- Lithio to 3-Lithio Conversion of 1-Lithio-naphthyllithium Compounds with an ortho¬Directing 2-(Dimethylamino)methyl Group // J. Am. Chem. Soc. American Chemical Society, 2013. Vol. 135, № 36. P. 13371-13378.
65. Rubial B. et al. Enantiospecific Synthesis of ortho -Substituted 1,1-Diarylalkanes by a 1,2-Metalate Rearrangement/ anti -S N 2' Elimination/Rearomatizing Allylic Suzuki- Miyaura Reaction Sequence // Angew. Chemie Int. Ed. 2019. Vol. 58, № 5. P. 1366¬1370.
66. Antonov A.S., Yakubenko A.A. Noncovalent Li---H Interaction in the Synthesis of peri -Disubstituted Naphthalene Proton Sponges // Synth. 2020. Vol. 52, № 1. P. 98-104.
67. Antonov A.S. et al. Aggregation behavior of lithionaphthalenes in solution: Experimental and theoretical study // Organometallics. 2020. Vol. 39, № 20. P. 3705¬3714.
68. Bardakov V.G. et al. Organoboron Derivatives of 1,8-Bis(dimethylamino)naphthalene: Synthesis, Structure, Stability, and Reactivity // Organometallics. 2022. Vol. 41, № 12. P. 1501-1508.
69. Knorr R. et al. “Conducted Tour” Migration of Li + during the cis / trans Stereoinversion of a-Arylvinyllithiums // Chem. - A Eur. J. 2017. Vol. 23, № 52. P. 12861-12869.
70. Duvinage D. et al. The Effect of Donor Additives on the Stability and Structure of 5- Diphenylphosphinoacenaphth-6-yllithium // Eur. J. Inorg. Chem. 2019. Vol. 2019, № 5. P. 712-720.
71. Holsten S. et al. Proximity enforced oxidative addition of a strong unpolar o-Si-Si bond at rhodium(i) // Dalt. Trans. 2020. Vol. 49, № 6. P. 1731-1735.
72. Furan S. et al. Tris(6-diphenylphosphinoacenaphth-5-yl)gallium: Z-Type Ligand and Transmetalation Reagent // Organometallics. 2021. Vol. 40, № 22. P. 3785-3796.
73. Nejman P.S. et al. Phosphorus-Bismuth Peri -Substituted Acenaphthenes: A Synthetic, Structural, and Computational Study // Inorg. Chem. 2020. Vol. 59, № 8. P. 5616-5625.
74. Kawai H. et al. Phosphonium Formation by Facile Carbon-Phosphorus Reductive Elimination from Gold(III) // J. Am. Chem. Soc. 2016. Vol. 138, № 2. P. 587-593.
75. Coleman R.S., Grant E.B. Application of a Cu(I)-mediated biaryl cross-coupling reaction to the synthesis of oxygenated 1,1'-binaphthalenes // Tetrahedron Lett. 1993. Vol. 34, № 14. P. 2225-2228.
76. Jaillet A. et al. Design of P-Chirogenic Aminophosphine-Phosphinite Ligands at Both Phosphorus Centers: Origin of Enantioselectivities in Pd-Catalyzed Allylic Reactions // J. Org. Chem. 2020. Vol. 85, № 22. P. 14391-14410.
77. Broka C.A. Total syntheses of phleigchrome, calphostin A, and calphostin D. Unusual stereoselective and stereospecific reactions in the synthesis of perylenequinones // Tetrahedron Lett. 1991. Vol. 32, № 7. P. 859-862.
78. Houck M.B. et al. Exploiting the Site Selectivity of Perfluoropyridine for Facile Access to Densified Polyarylene Networks for Carbon-Rich Materials // ACS Macro Lett. 2020. Vol. 9, № 7. P. 964-968.
79. Pandey U.P., Thilagar P. External Stimuli Responsive Bis(anthryl)borylaniline AIEgens for Viscosity and Temperature Sensing: The Game of Molecular Flexibility // Adv. Opt. Mater. 2020. Vol. 8, № 14. P. 1902145.
80. Tokoro Y. et al. Intra- and intermolecular interaction of anthracene moieties in 7,8- disilabicyclo[3.3.0]octadienyl-bridged bisanthracenes // RSC Adv. 2018. Vol. 8, № 44. P. 25177-25180.
81. Yamashita M. et al. Syntheses and structures of hypervalent pentacoordinate carbon and boron compounds bearing an anthracene skeleton - Elucidation of hypervalent interaction based on X-ray analysis and DFT calculation // J. Am. Chem. Soc. 2005. Vol. 127, № 12. P. 4354-4371.
82. Biswas K. et al. Steering Large Magnetic Exchange Coupling in Nanographenes near the Closed-Shell to Open-Shell Transition // J. Am. Chem. Soc. 2023. Vol. 145, № 5. P. 2968-2974.
83. Arrowsmith R.L. et al. Confocal and fluorescence lifetime imaging sheds light on the fate of a pyrene-tagged carbon monoxide-releasing Fischer carbene chromium complex // Dalt. Trans. 2015. Vol. 44, № 11. P. 4957-4962.
84. Fang Q. et al. Thermally populated “bright” states for wide-range and high temperature sensing in air // Chem. Commun. 2017. Vol. 53, № 42. P. 5702-5705.
85. Harvey R.G., Aboshkara E., Pataki J. Dibenz[a,c]anthracene: Electrophilic substitution and synthesis of phenol isomers // Tetrahedron. 1997. Vol. 53, № 47. P. 15947-15956.
86. Hafner A., Meisenbach M., Sedelmeier J. Flow Chemistry on Multigram Scale: Continuous Synthesis of Boronic Acids within 1 s // Org. Lett. 2016. Vol. 18, № 15. P. 3630-3633.
87. Qu B., Collum D.B. Structure of n-butyllithium in mixtures of ethers and diamines: Influence of mixed solvation on 1,2-additions to imines // J. Am. Chem. Soc. American Chemical Society , 2006. Vol. 128, № 29. P. 9355-9360.
88. Tai O., Hopson R., Williard P.G. Aggregation and Solvation of n-Butyllithium // Org. Lett. American Chemical Society, 2017. Vol. 19, № 15. P. 3966-3969.
89. Reich H.J. et al. Aggregation and reactivity of phenyllithium solutions // J. Am. Chem. Soc. American Chemical Society , 1998. Vol. 120, № 29. P. 7201-7210.
90. Margerison D., Newport J.P. Degree of association of n-butyl lithium in hydrocarbon media // Trans. Faraday Soc. 1963. Vol. 59. P. 2058.
91. Thomas R.D. et al. Fluxional exchange of tert-butyllithium tetramers from temperature¬dependent carbon-13-lithium-6 coupling // Organometallics. 1986. Vol. 5, № 9. P. 1851-1857.
92. Bouwkamp M. et al. Highly electron-deficient neutral and cationic zirconium complexes with bis(o-aryl)amine dianionic tridentate ligands // Organometallics. American Chemical Society, 1998. Vol. 17, № 17. P. 3645-3647.
93. Buchalski P. et al. Novel, axially chiral analogues of nickelocene with
nickeladibenzofluorenyl ligand // J. Organomet. Chem. 2015. Vol. 785. P. 26-31.
94. Brown K.J. et al. Preparation and lithiation of optically active 2,2’-dihalo-1,1’- binaphthyls. A general strategy for obtaining chiral, bidentate ligands for use in asymmetric synthesis // J. Am. Chem. Soc. 1984. Vol. 106, № 17. P. 4717-4723.
95. Yang Z.-K. et al. Cross-coupling polycondensation via C-O or C-N bond cleavage // Nat. Commun. 2018. Vol. 9, № 1. P. 1587.
96. Casarini D., Lunazzi L., Sgarabotto P. Conformational studies by dynamic NMR. 42. Detection of meso and racemic conformers resulting from a chirality created by the restricted torsion of hindered carbonyls // J. Crystallogr. Spectrosc. Res. 1991. Vol. 21, № 4. P. 445-450.
97. Katz H.E. Hydride sponge: 1,8-naphthalenediylbis(dimethylborane) // J. Am. Chem. Soc. American Chemical Society, 1985. Vol. 107, № 5. P. 1420-1421.
98. Rabanzo-Castillo K.M. et al. Synthesis, characterisation and electronic properties of naphthalene bridged disilanes // Dalt. Trans. 2019. Vol. 48, № 37. P. 13971-13980.
99. Pozharskii A.F. et al. 2-a-Hydroxyalkyl- and 2,7-Di(a-hydroxyalkyl)-1,8- bis(dimethylamino)naphthalenes: Stabilization of Nonconventional In/Out Conformers of “Proton Sponges” via N--H-O Intramolecular Hydrogen Bonding. A Remarkable Kind of Tandem Nitrogen Inversion // J. Org. Chem. 2007. Vol. 72, № 8. P. 3006-3019.
100. Schneider J. et al. Reversibility in Reactions of Linker-Bridged Distannenes with Terminal Alkynes at Ambient Temperature // Inorg. Chem. American Chemical Society, 2015. Vol. 54, № 12. P. 6020-6027.
101. Li T. et al. Crystal structure and optoelectronic properties of antiaromatic compound 3,4,9,10-tetrahydrodicyclopenta[cd,lm]perylene // Crystallogr. Reports. 2017. Vol. 62,
№ 6. P. 885-888.
102. Chiang L.-Y., Meinwald J. Peri-bridged naphthalenes. 4. chalcogen-bridged acenaphthylenes // Tetrahedron Lett. Pergamon, 1980. Vol. 21, № 47. P. 4565-4568.
103. Yang J. et al. Bicyclohexene- peri-naphthalenes: Scalable Synthesis, Diverse Functionalization, Efficient Polymerization, and Facile Mechanoactivation of Their Polymers // J. Am. Chem. Soc. American Chemical Society, 2020. Vol. 142, № 34. P. 14619-14626.
104. Thibault M.E. et al. Naphtho[1,2-c:5,6-c]difuran: A Reactive Linker and Cyclophane Precursor // J. Org. Chem. 2003. Vol. 68, № 22. P. 8373-8378.
105. Chen H.W. et al. Mapping Bridge Conformational Effects on Electronic Coupling in Mo 2 -Mo 2 Mixed-Valence Systems // Inorg. Chem. 2018. Vol. 57, № 12. P. 7455-7467.
106. Schulz T., Stalke D. Lithium and Aluminum Anthracenyldiimidosulfinates // Zeitschrift fur Naturforsch. B. 2010. Vol. 65, № 6. P. 701-710.
107. Lim Z. et al. Quinoidal Oligo(9,10-anthryl)s with Chain-Length-Dependent Ground States: A Balance between Aromatic Stabilization and Steric Strain Release // Chem. - A Eur. J. 2015. Vol. 21, № 51. P. 18724-18729.
108. Coitino E.L. et al. Degenerate lithium-hydrogen exchange reactions: An alternative mechanism for a metalation of CH4 in gas phase and tetrahydrofuran solution // J. Phys. Chem. A. American Chemical Society, 1998. Vol. 102, № 43. P. 8369-8376.
109. Wittig G., Pockels U., Droge H. Uber die Austauschbarkeit von aromatisch gebundenem Wasserstoff gegen Lithium mittels Phenyl-lithiums // Berichte der Dtsch. Chem. Gesellschaft (A B Ser. 1938. Vol. 71, № 9. P. 1903-1912.
110. Gilman H., Langham W., Jacoby A.L. Metalation as a Side Reaction in the Preparation of Organolithium Compounds // J. Am. Chem. Soc. 1939. Vol. 61, № 1. P. 106-109.
111. Schlosser M. The 2 x 3 toolbox of organometallic methods for regiochemically exhaustive functionalization // Angewandte Chemie - International Edition. 2005. Vol. 44, № 3. P. 376-393.
112. Antonov A.S., Bardakov V.G., Mulloyarova V. V. Sterically facilitated meta-lithiation of arenes, containing electron-donating groups // J. Organomet. Chem. 2020. Vol. 906. P. 121068.
113. Winkelhaus D., Neumann B., Mitzel N.W. An intramolecular boron nitrogen lewis acid base pair on a rigid naphthyl backbone // Zeitschrift fur Naturforsch. - Sect. B J. Chem. Sci. Verlag der Zeitschrift fur Naturforschung, 2012. Vol. 67, № 6. P. 589-593.
114. Wang L. et al. Far-Red and Near-Infrared Seminaphthofluorophores for Targeted Pancreatic Cancer Imaging // ACS Omega. 2017. Vol. 2, № 1. P. 154-163.
115. Kirby A.J., Percy J.M. Synthesis of 8-substituted 1-naphthylamine derivatives. exceptional reactivity of the substituents. // Tetrahedron. 1988. Vol. 44, № 22. P. 6903¬6910.
116. Fugel M. et al. Complementary bonding analysis of the N-Si interaction in pentacoordinated silicon compounds using quantum crystallography // Dalt. Trans. 2019. Vol. 48, № 43. P. 16330-16339.
117. Pop A. et al. On the coordination chemistry of organochalcogenolates RNMe2AE- and RNMe2AEAO- (E = S, Se) onto lead(ii) and lighter divalent tetrel elements // Dalt. Trans. 2014. Vol. 43, № 43. P. 16459-16474.
118. Harvey R.G., Cortez C. Synthesis of cholanthrene and 6-methylcholanthrene, biologically active analogs of the potent carcinogen 3-methylcholanthrene // J. Org. Chem. 1987. Vol. 52, № 2. P. 283-284.
119. Clayden J. et al. The First Crystallographic Evidence for the Structures ofortho- Lithiated Aromatic Tertiary Amides // Angew. Chemie Int. Ed. 2001. Vol. 40, № 7. P. 1238-1240.
120. Kamikawa T., Kubo I. Synthesis of 2-Alkyl-1,4-naphthoquinones via an ortho - Directive Metalation // Synthesis (Stuttg). 1986. Vol. 1986, № 05. P. 431-433.
121. Gething B., Patrick C.R., Tatlow J.C. 36. Polycyclic fluoroaromatic compounds. Part I. Some reactions of octafluoronaphthalene // J. Chem. Soc. 1962. P. 186.
122. Block E. et al. o-Lithiothiophenol equivalents. Generation, reactions and applications in synthesis of hindered thiolate ligands // J. Am. Chem. Soc. 1989. Vol. 111, № 2. P. 658-665.
123. Kenyon P., Worner M., Mecking S. Controlled Polymerization in Polar Solvents to Ultrahigh Molecular Weight Polyethylene // J. Am. Chem. Soc. 2018. Vol. 140, № 21. P. 6685-6689.
124. Nowak M. et al. Substituted benzoquinazolinones. Part 1: Synthesis of 6-
aminobenzo[h]quinazolinones via Buchwald-Hartwig amination from 6-
bromobenzo[h]quinazolinones // Tetrahedron. 2014. Vol. 70, № 34. P. 5153-5160.
125. Marchenko A. V. et al. Organometallic Synthesis of 2,3,6,7-Tetrasubstituted 1,8- Bis(dimethylamino)naphthalenes for Investigation of the Double Buttressing Effect in Proton Sponges // J. Org. Chem. 2022. Vol. 87, № 24. P. 16506-16516.
126. Beckmann J., Hupf E., Lork E. Synthesis of 7,7,14,14-tetrachlorodinaphtho[1,8bc:1',8'- fg][1,5]distannocine. Molecular structure of the di-water tetra-THF adduct // Main Gr. Met. Chem. 2013. Vol. 36, № 3-4.
127. Soolingen J. van et al. A Simple Procedure for the Preparation of 1,8- BIS (Diphenylphosphino)Naphthalene // Synth. Commun. 1995. Vol. 25, № 11. P. 1741-1744.
128. Neugebauer W., Clark T., von Rague Schleyer P. Regioselektive Metallierung von Aromaten, II. Zweitmetallierung von 1-Lithionaphthalin und 9-Lithioanthracen // Chem. Ber. John Wiley & Sons, Ltd, 1983. Vol. 116, № 10. P. 3283-3292.
129. Ashe A.J., Kampf J.W., Savla P.M. Selective functionalization in the bay region of polycyclic aromatic hydrocarbons via dilithiation // J. Org. Chem. American Chemical Society, 1990. Vol. 55, № 21. P. 5558-5559.
130. Lecachey B. et al. MeLi + LiCl in THF: One Heterodimer and No Tetramers // J. Org. Chem. American Chemical Society, 2010. Vol. 75, № 17. P. 5976-5983.