0. Введение 3
0.1 Постановка задачи. Обзор работы и использованная литература 3
0.2 Предисловие 7
0.3 Проблема эквивалентности Пенлеве в Динамике 11
0.4 Обозначения для трансцендентов Пенлеве 19
1. Сведение дифференциальных уравнений к полиномиальной форме 23
1.1 Сведение дифференциальных уравнений к полиномиальной форме 23
введением дополнительных переменных 23
1.2 Примеры сведения 27
2. Уравнения динамики 32
2.1 Шесть уравнений Пенлеве 32
2.2 Сведение уравнений Пенлеве к полиномиальной форме 32
3. Вычисление коэффициентов Тейлора для полиномиальных ОДУ 36
3.1 Схемы для вычисления коэффициентов Тейлора 36
3.2 Применение к уравнениям динамики 37
4. Априорная оценка погрешности, выбор шага и степени Тейлоровского 40
приближения 40
4.1 Теорема об оценке 40
4.2 Алгоритм выбора шага и степени Тейлоровского приближения 41
4.3 Применение к уравнениям динамики 42
5. ПрограммаTSMR (TaylorSeriesMethodRealcase) 48
6. Численные эксперименты 52
6.1 Простейшая квадратичная задача 52
6.2 Численное интегрирование уравнений динамики 53
Заключение 54
Литература 55
При написании настоящего раздела мы использовали вводную статью из раздела 32 источника NIST(NationalInstitute) [72] и статью Питера Кларксона [33].
Актуальность темы исследования. Согласно Ивасаки и др. [46], уравнения Пенлеве являются «важнейшими нелинейными обыкновенными дифференциальными уравнениями», и, по мнению многих специалистов, «в течении XXI века функции Пенлеве станут новыми членами сообщества специальных функций», войдя в ядро современной теории специальных функций. Это предсказание подтвердилось на практике: уравнения Пенлеве стали разделом в цифровой библиотеке математических функций NIST [72]. Функции Пенлеве значительно расширили роль классических специальных функций, таких как Эйри, Бесселя, Эрмита, Лежандра и т.д., которые были введены в рассмотрение в 19 веке. Все чаще обнаруживалось, что решения многих важных научных проблем (теория рассеяния нейтронов, специальные решения уравнений в частных производных, нелинейные волновые уравнения, волоконная оптика, транспортные задачи, комбинаторика, случайные матрицы, квантовая гравитация и теория чисел), так или иначе, оказывались связанными с шестью уравнениями Пенлеве, представленными им в 1898 году [58].
В 2019 году автор статьи NIST [72]по уравнениям Пенлеве Питер Кларксон [33] отметил, что одной из важнейших проблем он считает разработку современных высокоточных численных методов решения и проведение соответствующих численных экспериментов – как в комплексной, так и в вещественной области и, особенно, в окрестности особых точек (полюсов). Одним из наиболее высокоточных методов численного интегрирования обыкновенных дифференциальных уравнений как в комплексной, так и в вещественной области, являются методы рядов Тейлора высоких порядков (в работе Л.К. Бабаджанянца и Большакова в программе TSMR и TSMC предусмотрено использование порядков до шестидесятого, а в реальных примерах оптимальными оказались 36-37 порядки, в том время как в большинстве работ по методам Тейлора использовались порядки ≈ 8-10).
Таким образом, поставленная выше проблема в нашей ВКР является актуальной и представляет значительный прикладной интерес.
Объектом исследования в данной работе являются уравнения Пенлеве.
Предметом исследования выступают численные эксперименты с уравнениями Пенлеве в полиномиальной форме в вещественной области, и в частности, в окрестности особых точек.
В главе 1 был рассмотрен подход к построению полиномиальной системы [67, 68, 69] и 3 примера сведения системы к полиномиальной форме. В главе 2 были рас-смотрены шесть уравнений динамики и сведены к полиномиальной форме, результаты представлены в пункте 2.1. В главе 3 был рассмотрен алгоритм метода рядов Тейлора [67]. Были составлены оболочки и схемы, необходимые для нахождения коэффициентов Тейлора для случая шести уравнений динамики. В главе 4 рассмотрена теорема об оценке погрешности метода рядов Тейлора [68] и получены оценки для шести уравнений динамики. В главе 5 кратко описана реализация метода рядов Тейлора, предложенная в статье [69]. В главе 6 предложены численные эксперименты для третьего уравнения динамики. Таким образом, автором в настоящей работе получены следующие новые результаты:
1. Каждое из шести уравнений динамики сведено к полиномиальной системе обыкновенных дифференциальных уравнений (параграф 2.2, стр. 10 - 13).
2. Построены оболочки и схемы для каждой из этих систем, позволяющие применить рекуррентные соотношения для коэффициентов Тейлора ([32], параграф 3.1, стр. 13 - 14), см. параграф 3.2, стр. 15 – 17.
3. Для каждой из этих систем при помощи теоремы об оценке погрешности ([32], см. параграф 4.1 - 4.2, стр. 18 - 20) получены априорные гарантированные оценки абсолютной и относительной погрешности решения задачи Коши, см. параграф 4.3, стр. 20 – 24.
4. При помощи программы TSMR [69] и на основе полученных схем и формул для коэффициентов Тейлора проведены численные эксперименты решения задачи Коши для простейшего квадратичного уравнения (см. Таблица 1, стр. 29) и системы полиномиальных уравнений для третьего уравнения Пенлеве (см. Таблица 2, стр. 30). Полученные эксперименты показали преимущества примененного метода решения полиномиальной задачи Коши в окрестности особых точек.