Задачи на доказательство по алгебре и началам математического анализа как средство формирования познавательных универсальных учебных действий старшеклассников
Введение 3
Глава 1 Методические основы формирования познавательных универсальных учебных действий через задачи на доказательства в курсе алгебры и начал математического анализа 9
1.1 Понятие познавательных универсальных учебных действий 9
1.2 Задачи на доказательство в школьных учебниках математики 13
Глава 2 Реализация формирования познавательных универсальных учебных действий через задачи на доказательства в курсе алгебры и начал математического анализа 20
2.1 Технология усвоения методов доказательства 20
2.2 Проектирование изучения темы «Тригонометрические тождества» 32
2.3 Элективный курс «Задачи на доказательство в курсе алгебры и начал математического анализа» 42
2.4 Описание педагогического эксперимента 46
Заключение 64
Список используемой литературы 67
Приложение А Ответы к тесту КОТ 75
Актуальность и научная значимость. На протяжении всего развития общества требуется постоянное совершенствование практических умений и открытие новых теоретических знаний. В настоящее время система образования претерпевает реформирование и модернизацию. Основные изменения нацелены на многогранное формирование личности. Одним из наиболее важных аспектов развитой личности является уровень сформированности логического мышления.
Мышление формируется в процессе изучения каждого предмета. Далеко не последнюю роль в его развитии играет обучение математике. Она способствует развитию у школьников навыков анализа данных, принятия решений и аргументировать свою позицию.
Основную долю формирования навыков проведения доказательства берёт на себя курс геометрии. Большое количество заданий на доказательство способствует развитию логического мышления, учит анализировать данные и аргументировать ту или иную позицию. Однако, в курсе алгебры задачи на доказательство занимают не менее важное место.
Одной из многих целей обучения математики служит обучение применению методов и способов проведения доказательств при решении задач. Простые задания, состоящие из одного или двух шагов доказательства, должны присутствовать с самого начала систематического изучения курса алгебры.
Решение стандартных задач на применение изученных свойств требует выработки определённых навыков, что обеспечивает усвоение теоретического материала и умение использовать его при выполнении математических упражнений.
В свою очередь, они позволяют развить логическое мышление, развить умение рассуждать, побуждают учащихся к анализу, аргументации, обоснованию, доказыванию. Они также могут являться неотъемлемой частью решения вычислительных задач. Главное отличие от задач на доказательство в геометрии алгебраические доказательства отличаются абстрактностью и отсутствием чертежей. Большая часть доказательств в алгебре проводят в общем виде.
Основное место в психолого-педагогической литературе и в методике обучения математике занимает процесс формирования умений проведения доказательств. Данный процесс является сложным и многогранным. Поэтому вопрос о его сущности, поиске удобного и краткого доказательства, обучении проведения математических доказательств не оставляет равнодушным многих исследователей.
«Вопрос о сущности математического доказательства изучался в работах Ф.Ф. Притуло [41], А.А. Столяра [50] и др.
А.А. Столяр [50] считает, что в строгом смысле о доказательстве можно говорить лишь в рамках какой-нибудь формальной аксиоматической системы. По его мнению, любое доказательство представляет собой конечную последовательность предложений математической теории.
Ф.Ф. Притуло [41] рассматривает доказательство как мыслительный процесс обоснования какого-либо суждения с помощью ранее известных истинных суждений.
Результаты данных исследований обладают большим значением для улучшения методики обучения учащихся проведению доказательств. Однако теория и практика сильно расходятся. Знания и умения по проведению доказательств находятся на низком уровне, а также присутствует формализм в их знаниях» [10].
Нельзя отрицать тот факт, что взаимосвязь жизненных и школьных задач довольно большая. Основные приемы рассуждения и доказательства пересекаются при решении двух видов задач. «Поэтому процесс обучения учащихся методам и приёмам проведения рассуждений и доказательств на уроках алгебры в старших классах является одним из средств формирования познавательных универсальных учебных действий, их воспитания и подготовки к будущей производственной деятельности» [10].
Анализ основной и дополнительной учебной литературы показывает, что на уроках алгебры в старших классах уделяется недостаточное количество времени задачам на доказательство. Что приводит к неполному формированию познавательных универсальных учебных действий учеников и не готовность выпускников школы к решению жизненных задач. Данная ситуация и определяет актуальность и научную значимость проблемы исследования.
Вопросы формирования познавательных универсальных учебных действий на уроках в школе, в том числе и алгебры, а также, во внеурочное время, затрагивались в различных диссертационных работах. Можно отметить исследования авторов Смирновой В.А. [48], Чоповой С.В. [62], Чулановой Н.А. [63], Фирер А.В. [57].
Проблема исследования представляется в определении задач на доказательство, влияющих на формирование познавательных универсальных учебных действий в курсе алгебры и начал математического анализа старшей общеобразовательной школе.
Под объектом исследования по теме данной исследовательской работы понимается процесс обучения математике в старшей общеобразовательной школе.
Предметом исследования выступают задачи на доказательство в курсе алгебры и начал математического анализа 10 - 11 классов в общеобразовательной школе.
Цель данной работы заключается в исследовании и систематизации задач на проведение доказательств как средства формирования познавательных универсальных учебных действий.
Гипотеза исследования основана на том что детальное и акцентированное обучение способам проведения доказательства при решении задач в курсе алгебры и начал математического анализа, позволяет обеспечить положительный результат в формировании познавательных учебных универсальных действий.
Задачи:
• определить, что является сущностью понятия «познавательные универсальные учебные действия»;
• разработать элективный курс «Задачи на доказательство в курсе алгебры и начал математического анализа»;
• предоставить результаты педагогического эксперимента по влиянии элективного курса на процесс формирования ПУУД.
К теоретической и методологической основе данного исследования относятся учебные пособия 10-11 классов Н.Я. Никольского [34], [35], А.Г. Мерзляка [26], [27], [28], [29] А.Г. Мордковича [31], [32], [33], А.Г. Рубина [43], [44].
Базовыми для настоящей работы являются основные требования к знаниям, умениям учащихся по ФГОС СОО и анализ содержания теоретического и задачного материала по темам, включающее в себя решение задач на проведение доказательств в курсе алгебры и начал математического анализа старших классов общеобразовательной школы [54], [56].
Методы исследования, использованные для решения поставленных задач: изучение и систематизация научно-исследовательской и учебно-педагогической литературы; наблюдение, анализ и педагогический эксперимент; статистическая обработка данных.
Основные этапы исследования:
• 1 этап (2020/2021 уч.г.): анализ ранее выполненных исследований по теме диссертации, анализ школьных учебников, нормативных документов (стандартов, программ), анализ опыта работы педагогов по данной теме;
• 2 этап (2020/2021 уч.г.): определение теоретических основ исследования по теме диссертации;
• 3 этап (2021/2022 уч.г.): определение методических основ исследования, разработка элективного курса для обучающихся старших классов;
• 4 этап (2021/2022 уч.г.): оформление диссертации, корректировка ранее представленных материалов, уточнение аппарата исследования, описание результатов экспериментальной работы, формулирование выводов.
Опытно-экспериментальная база исследования: Российская Федерация, Московская область, г.о. Павловский Посад, «Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №2» корпус 2. В эксперименте принимали учащиеся старших классов.
Научная новизна проведенного исследования заключается в определении и обосновании методических особенностей формирования познавательных универсальных ученых действий через задачи на доказательство в курсе алгебры и начал математического анализа.
Теоретическая значимость исследования состоит в том, что в нем сформулированы теоретические основы обучения проведению доказательств в курсе математики старших классов, проанализированы соответствующие требования к подготовке учащихся; проанализирована методика обучения проведению доказательств учащихся.
Практическая значимость исследования заключается в анализе задачного материала школьного курса алгебры и начал математического анализа по теме диссертации, разработке соответствующего элективного курса.
Апробация и внедрение результатов работы велись в течение всего времени проведения исследования. Экспериментальная проверка предлагаемых методических рекомендаций была осуществлена в период производственной практики(научно-исследовательской работы) и преддипломной практики на базе кафедры высшей математики и математического образования Тольяттинского государственного университета, а также в период работы учителем математики в «Муниципальном бюджетном общеобразовательном учреждении средней общеобразовательной школе №2,корпус 2» (Российская Федерация, Московская область, г.о. Павловский Посад, ул. Каляева, д. 2).
На защиту выносятся:
• методические рекомендации по формированию познавательных универсальных учебных действий с помощью задач на доказательство в курсе алгебры и начал математического анализа;
• элективный курс «Задачи на доказательство в курсе алгебры и начал математического анализа»;
• результаты педагогического эксперимента.
Структура магистерской диссертации. Работа состоит из введения, двух глав, заключения, содержит 8 рисунков, 7 таблиц, список используемой литературы (71 источник). Основной текст работы изложен на 74 страницах.
Социальная жизнь на протяжении всего времени существования человечества оставляет свой отпечаток на процессе обучения. На разных этапах своего развития социуму требуются люди, обладающие определенными навыками и знаниями. В ФГОС СОО отмечено, что выпускники школ должны обладать познавательными УУД.
Формирование познавательных универсальных учебных действий в курсе алгебры и начал математического анализа - процесс трудный и многоаспектный.
Его результаты являются неотделимой частью Федерального государственного образовательного стандарта среднего общего образования, который составляет основу для построения образовательного процесса. Курс математики в старшей школе обладает большим инструментарием для формирования познавательных УУД. В большей степени это связано со спецификой самого учебного предмета.
Поскольку в обучении старшеклассников математике уделяется большое внимание на развитие его логических способностей, абстрактному мышлению, умению анализировать и структурировать информацию, находить взаимосвязи между понятиями, лаконичному построению аргументации своей точки зрения, умению. Данные навыки, получаемые на уроках алгебры и начал математического анализа, существенно влияют на приспосабливаемость учащегося к жизни в социуме.
Современная реальность требует от выпускников школы уметь быстро принимать решения, аргументировать и доказывать свою позицию, обладать не только знаниями, но и уметь учиться. Именно для формирования этих умений идеально подходят задачи на доказательство. Связь умений доказывать математические утверждения и их практическое применение при решении жизненных ситуаций обуславливает актуальность данной темы исследования.
В ходе выполнения первой задачи был проведен анализ психолого-педагогической и методической литературы, что позволило определить сущность познавательных универсальных учебных действий, а также, понять, что понимается под ними.
Например, Боженкова Л.И. отмечает, что «к познавательным общеучебным УУД относятся действия, связанные с переработкой учебной информации. Учебная информация становится знанием человека, если только она «присвоена» им, прибавлена к наличному умственному опыту, переработана с помощью познавательных действий» [28].
В данном пособии также отмечено, что для формирования познавательных УУД необходимо использовать задания, направленные на переработку полученных знаний в виде таблиц и схем. Там же приведены типовые задания для реализации такого подхода к развитию ПУУД. При таком подходе к проработке учебного материала ученики лучше его усваивают и формируют свои навыки по структурированию информации. Помимо этого, анализ учебных пособий для старшеклассников по курсу алгебры и начал математического анализа позволил убедиться в том, что на решение задач на доказательство уделяется недостаточное количество времени. Что существенно влияет на уровень сформированности познавательных УДД.
В ходе опытно - экспериментальной работы были получены следующие выводы.
Во-первых, благодаря специфике проведения математических доказательств и применения для этого логического и абстрактного мышления, задачи на доказательство являются эффективным средством в процессе формирования познавательных универсальных учебных действий у учащихся старших классов. В свою очередь, они учат старшеклассников кратко и аргументированно высказывать свою позицию, структурировать полученную информацию и соотносить с тем, что уже было изучено ранее.
Во-вторых, посредством структурирования и анализа учебной информации, в частности представления доказательств ключевых задач в виде схем, успешно развиваются познавательные универсальные действия.
В-третьих, увеличение учебного времени, уделяемого на обучение проведению математических доказательств, за счёт элективного курса оказывает положительное влияние на уровень сформированности познавательных универсальных действий и уровень обученности учеников к решению задач на доказательство в курсе алгебры и начал математического анализа.
Полученные результаты проведенного исследования подтверждают правоту выдвинутой гипотезы, которая основана на том что детальное и акцентированное обучение способам проведения доказательства при решении задач в курсе алгебры и начал математического анализа, позволяет обеспечить положительный результат в формировании познавательных учебных универсальных действий. Тем самым, позволяя старшеклассникам получить навыки, необходимые для существования в социуме.
Таким образом, все поставленные задачи и цель были достигнуты.
1. Аввакумова И. А. Задачи на доказательство как средство формирования познавательных универсальных учебных действий в процессе обучения математике // Актуальные вопросы преподавания математики, информатики и информационных технологий. 2020. № 5. С. 111-116.
2. Ажгалиев У. О некоторых способах составления тригонометрических тождеств // Математика и математическое образование : сборник трудов VI Международной научной конференции «Математика. Образование. Культура». Тольятти : Изд-во ТГУ, 2013. С. 104—105/
3. Акберова Р.А. Элективный курс по математике «Элементы тригонометрии». Каран-Кункас, 2014.
4. Асмолов А.Г. Как проектировать универсальные учебные действия. М.: Просвещение, 2010. 336 с.
5. Асмолов А.Г. Формирование УУД в основной школе: от действия к мысли. Система заданий. Пособие для учителя. М.: Просвещение, 2010.
6. Боголюбов В.М. Введение в педагогическую технологию: учебное пособие. Пятигорск: ПГЛУ, 1996. 232 с.
7. Боженкова Л.И. Методика формирования универсальных учебных действий при обучении алгебре. М. : Лаборатория знаний, 2016. 240 с.
8. Боженкова Л.И. Познавательные универсальные учебные действия в обучении математике // Наука и школа. 2016. №1. С. 54-60.
9. Бузин В.Н. Краткий отборочный тест. М.: Смысл (Психодиагностическая серия), 1998. №4.
10. Ветошкина Е. С. Обучение учащихся проведению доказательств на уроках геометрии в основной школе :Дис. канд. пед. наук : 13.00.02. Коломна, 2004. 196 с.
11. Виленкин Н.Я. Индукция. Комбинаторика. Пособие для учителей. М.: Просвещение, 1976. 48с.
12. Виленкин Н.Я. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. Учебник для учащихся общеобраз. организаций (углублённый уровень). М.: Мнемозина, 2014. 352 с.
13. Виленкин Н.Я. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 11 класс. Учебник для учащихся общеобраз. организаций (углублённый уровень). М.: Мнемозина, 2014. 312 с.
14. Выготский Л.С. Педагогическая психология. М.: Педагогика- пресс, 1996. 536 с.
15. Газейкина А.И., Казакова Ю.О. Диагностика сформированности познавательных универсальных учебных действий обучающихся основной школы // Педагогическое образование в России, 2016. №7. URL: https:ZZcyberleninka.ru/articleZn/diagnostika-sformirovannosti-poznavatelnyh- universalnyh-uchebnyh-deystviy-obuchayuschihsya-osnovnoy-shkoly (дата обращения: 18.04.2022).
...