Тип работы:
Предмет:
Язык работы:


МАГНИТНЫЕ СВОЙСТВА И СОСТОЯНИЕ ПОВЕРХНОСТИ ЛЕНТ АМОРФНЫХ МАГНИТОМЯГКИХ СПЛАВОВ

Работа №103229

Тип работы

Авторефераты (РГБ)

Предмет

физика

Объем работы12
Год сдачи2004
Стоимость250 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
24
Не подходит работа?

Узнай цену на написание


1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
2. ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
3. ОБЩИЕ ВЫВОДЫ.
4. ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

АКТУАЛЬНОСТЬ ТЕМЫ.
Аморфные и нанокристаллические сплавы, по сравнению с традиционными кристаллическими материалами, являются сравнительно новым классом магнитных материалов. Аморфные магнитомягкие материалы представляют собой сплавы 75-85 % одного или нескольких переходных металлов (Ре, Со, N1) и 15-20 % металлоида (В, С, 81, Р и др.).
Большое, по сравнению с кристаллическими материалами, со-держание немагнитных элементов в аморфных магнитных сплавах (~20 ат.%) понижает индукцию насыщения этих материалов, но является необходимым условием для получения аморфного состояния. Вариации состава этих сплавов и применение различных обработок позволяет получить такое сочетание магнитных и электрических свойств, которое дает возможность на их основе создать магнитные материалы, имеющие широкие области использования в технике. Поэтому изучение магнитных свойств быстрозакаленных магнитомягких материалов имеет определенный практический интерес. Но не менее интересно исследование магнитных свойств данного класса материалов и с научной точки зрения. Сверхбыстрое охлаждение расплава при получении аморфных металлических сплавов приводит к подавлению кристаллографической анизотропии и позволяет выявить влияние других факторов, второстепенных для кристаллических материалов, (например, магнитоупругой энергии, энергии наведенной анизотропии и т.п.) на процессы намагничивания и перемагничивания, следовательно, и формирование магнитных свойств. Учет влияния таких факторов, как структурно-морфологические особенности, состояние поверхности ленты, высокая диффузионная активность атомов металлоида дает более широкие возможности изучения физических механизмов, влияющих на процессы намагничивания и перемагничивания, следовательно, и на формирование магнитных свойств данного класса материалов. Немаловажным является выявление физических причин влияния поверхностного слоя ленты на магнитные свойства аморфных сплавов при изменении его состояния в результате специальных (термической, термомагнитной, локальной лазерной) обработок и взаимодействия с химически активными средами (электроизоляционными покрытиями различной морфологии, средой отжига, наводороживанием и оксидированием поверхности ленты).
Одной из основных характеристик магнитопроводов являются магнитные потери. Известно несколько механизмов возникновения магнитных потерь, однако в проводящих материалах определяющую роль играют макро- и микровихревые токи, возникающие при изменении магнитного потока. Расчеты показывают, что динамическая часть магнитных потерь имеет квадратичную зависимость от частоты. Полагают, что потери на гистерезис зависят от частоты линейно. Следовательно, динамические потери за цикл перемагничивания должны иметь линейную зависимость от частоты. Экспериментальная же зависимость является нелинейной, что объясняют наличием неоднородности смещения доменных границ, их амплитудным и фазовым изгибом и уменьшением ширины доменов с ростом частоты. Для аморфных сплавов было обнаружено ранее неизвестное резкое увеличение магнитных потерь при низких частотах перемагничивания, которое нельзя объяснить только динамическим изгибом доменных границ и дроблением доменной структуры [I]. Этот факт удовлетворительно объясняется в рамках теории магнитного последействия: увеличение поля вязкости при низких частотах, обусловленного перескоком диффузионно подвижных атомов, приводит к возникновению коррелированных скачков Баркгаузена и аномальному повышению скорости движения доменных границ в скачке. Однако, вопрос, касающийся механизмов формирования низкочастотной аномалии магнитных потерь, не является окончательно решенным. Поэтому весьма важным является также изучение вопросов, связанных с выявлением физических причин формирования низкочастотной аномалии магнитных потерь.
В соответствии с вышеизложенным, определены ЦЕЛИ РАБОТЫ.
- исследование магнитных свойств аморфных магнитомягких сплавов при применении различных воздействий на состояние поверхности лент этих сплавов;
- выявление физических причин возникновения аномалии магнитных потерь за цикл при низких частотах перемагничивания.
Для этого в работе поставлены следующие ЗАДА ЧИ:
- провести исследования влияния различных воздействий (термообработок (на воздухе и в вакууме), нанесения электроизоляционных покрытий различной морфологии, проведения локальной лазерной обработки, электролитического наводороживания и т.д.) на магнитные свойства аморфных магнитомягких сплавов на основе железа;
- выявить механизм влияния электроизоляционных покрытий на магнитные свойства аморфных быстрозакаленных сплавов;
- проанализировать влияние различных факторов (вариации магнитоупругой энергии; частичной кристаллизации поверхности; типа доменных границ, участвующих в процессах перемагничивания; различных химически активных сред и т.п.) на вид частотной зависимости удельных магнитных потерь, приведенных к единице индукции и частоты.
ОБЪЕКТЫ ИССЛЕДОВАНИЯ: образцы аморфных сплавов на основе железа и кобальта с положительной магнитострикцией насыщения. Исследуемые образцы имели форму полос размерами 130x10 мм и толщину 20 - 27 мкм.
НА УЧНАЯ НОВИЗНА.
На основе совместных исследований магнитных свойств и Мессбауэровских спектров разработан экспресс-метод определения распределения намагниченности в объеме лент аморфных магнитомягких сплавов.
Исследование лент аморфных магнитомягких сплавов с разным структурным состоянием, уровнем магнитоупругой энергии, распределением намагниченности в ленте позволило выявить основные физические причины формирования низкочастотной аномалии магнитных потерь. Показано, что наблюдаемое аномальное повышение магнитных потерь за цикл перемагничивания в области низких частот имеет вид резонансной кривой. Пик, наблюдаемый при частотах 20-40 Гц, формируется при участии смещения 90- градусных доменных границ в процессе перемагничивания, имеет сложную мультиплетную структуру и удовлетворительно объясняется релаксацией в процессе перемагничивания осей разных типов пар элементов (например, для сплава Ге-В-81-С пары 81-В, С-В, В-
В и т.п.).
Установлено, что процессы вращения намагниченности и смещения 180-градусных доменных границ не приводят к формированию низкочастотной аномалии магнитных потерь за цикл перемагничивания. Аномалия существенно уменьшается со снижением магнитоупругой энергии и объема, перемагничиваемого смещением 90- градусных доменных границ. Частичная поверхностная кристаллизация сплава, возрастание объема доменов с ортогональной намагниченностью способствуют усилению аномалии частотной зависимости магнитных потерь за цикл.
Проанализировано влияние внедрения элементов различных химически активных сред (наводороживание и оксидирование поверхности, нанесение электроизоляционных покрытий, атмосфера отжига) в поверхность лент аморфных магнитомягких сплавов на распределение намагниченности и изменение магнитных свойств. Выявлен механизм влияния электроизоляционных покрытий разной морфологии на магнитные свойства аморфных магнитомягких сплавов.
Показано, что вариация длительности изотермической выдержки при постоянной температуре во время термообработки приводит к соответствующей вариации толщины поверхностного аморфно-кристаллического слоя. Для получения высоких магнитных свойств в результате термической обработки и повышения их временной стабильности необходимо формирование аморфно-кристаллического слоя оптимальной толщины (например, для сплава Ре-В- 81-С толщиной 25 мкм глубина такого слоя составляет 30-50 нм).
ПРАКТИЧЕСКАЯ ЗНА ЧИМОСТЬ.
- Предложен и запатентован способ получения аморфной ленты с электроизоляционным покрытием, свойства которой не хуже ленты без ЭИП, прошедшей термообработку по оптимальному режиму. Этот способ состоит в совмещении формирования ЭИП с термомагнитной обработкой лент аморфных сплавов.
- Показано, что при локальной лазерной обработке лент аморфных магнитомягких сплавов в области прохождения лазерного луча имеет место частичная кристаллизация аморфного сплава, которая влияет на индуцируемые напряжения и, соответственно, на распределение намагниченности и процессы намагничивания и перемагничивания. Наибольший эффект улучшения магнитных свойств ленты достигается при совместном применении лазерной и термомагнитной обработок.
- Выявлены физические причины влияния химически активных сред (воды, ацетона, электроизоляционных покрытий, атмосферы отжига, электролитического наводороживания и оксидирования поверхности) на магнитные свойства лент аморфных магнитомягких сплавов. Псевдоодноосные растягивающие напряжения индуцируются за счет анизотропного внедрения элементов этих сред из-за анизотропии распределения намагниченности в исходном состоянии ленты.
- Установлено, что для получения высокого уровня магнитных свойств в результате термической обработки необходимо формирование поверхностного аморфно-кристаллического слоя оптимальной толщины.
АПРОБАЦИЯ РАБОТЫ.
Результаты исследований, составляющие основу диссертации, представлялись на следующих конференциях и семинарах:
- V Всесоюзная конференция «Аморфные прецизионные сплавы: технология, свойства, применение» (Ростов Великий, 23-27 сентября 1991 г.);
- Ш межгосударственный семинар «Структурно-морфологические основы модификации материалов методами нетрадиционных технологий» (Обнинск, 14-16 июня 1995 г.);
- Soft Magnetic Materials Conference (Ciacov, 12-14 September, 1995);
- Российский семинар «Структурная наследственность в процессах сверхбыстрой закалки расплавов» (Ижевск, 26-28 сентября 1995 г.);
- Шестое международное совещание «Аморфные прецизионные сплавы: технология, свойства, применение» (Боровичи, 19-20 сентября 1996 г.);
- 9th International conference on Rapidly quenched and metastable materials (Bratislava, August 25-30,1996);
- Soft Magnetic Materials 13 Conference (Grenoble, 24-26 September, 1997);
- Soft Magnetic Materials 14 Conference (Balatonfured, Hungary, September 8- 10,1999);
- V межгосударственный семинар «Структурно-морфологические основы модификации материалов методами нетрадиционных технологий» (Обнинск, 14-16 июня 1999 г.);
- IX Международный семинар «Дислокационная структура и механические свойства металлов и сплавов. Актуальные проблемы нанокристаллических материалов: Наука и технология» (Екатеринбург, 18-22 марта 2002 г.).
ПУБЛИКАЦИИ РАБОТЫ.
По результатам проведенных исследований опубликовано 13 научных статей, 28 тезисов докладов, получен 1 патент на изобретение.


Возникли сложности?

Нужна помощь преподавателя?

Помощь студентам в написании работ!


1. Разработан экспресс-метод определения распределения намагниченности в лентах аморфных магнитомягких сплавов на основе полученной с помощью Мессбауэровской спектроскопии зависимости максимального значения остаточной индукции от объема доменов с ортогональной намагниченностью и зависимости остаточной индукции, измеренной по частным петлям гистерезиса, от максимальной.
2. Исследование взаимосвязи магнитных свойств с состоянием поверхности образцов аморфных магнитомягких сплавов, подвергнутых различным воздействиям, показало, что:
- для получения высокого уровня магнитных свойств в результате термической обработки необходимо формирование поверхностного аморфно-кристаллического слоя оптимальной толщины. Например, для сплава РсВ8К толщиной 25 мкм глубина такого слоя составляет 30-50 нм.
- частичная кристаллизация сплава в области лазерной дорожки при локальной лазерной обработке сплава влияет на индуцируемые напряжения, которые определяют вид доменной структуры, оказывают воздействие на распределение намагниченности в ленте и процессы намагничивания и перемагничивания. Наибольший эффект улучшения магнитных свойств ленты достигается при совместном применении лазерной и термомагнитной обработок.
- электролитическое наводороживание и оксидирование поверхности ленты оказывает влияние на распределение намагниченности в ленте за счет создания псевдоодноосного растяжения. Такое растяжение может быть связано с анизотропным внедрением водорода и кислорода в поверхностный слой ленты из-за анизотропии распределения намагниченности в исходном состоянии.
- при температуре отжига атмосфера является химически активной средой по отношению к лентам аморфных магнитомягких сплавов. Взаимодействие поверхности ленты с находящимися в воздухе водяными парами способствует индуцированию плоского псевдоодноосного растяжения из-за соответствующего анизотропного оксидирования и наводороживания ее поверхности.
3. Исследование неорганических электроизоляционных покрытий различных химсоставов и морфологии (аморфных и кристаллических) показало, что имеет место химическое взаимодействие электроизоляционных покрытий с поверхностью лент исследуемых сплавов. Знак индуцируемых покрытием напряжений зависит от типа этого взаимодействия: внедрение элементов покрытия в поверхностный слой ленты приводит к растяжению поверхности, а замещение более крупных элементов мелкими (с меньшим значением эффективного радиуса атома)- к возникновению плоских сжимающих напряжений. Дополнительным источником индуцирования плоских сжимающих напряжений в ленте является локальная
частичная кристаллизация покрытия. Влияние покрытия на распределение намагниченности и магнитные свойства ленты зависит от распределения намагниченности в исходном состоянии и обусловлено анизотропным внедрением элементов покрытия, генерирующим псевдоодноосные напряжения в ленте.
4. Выявление физических причин влияния электроизоляционных покрытий на свойства аморфных магнитомягких сплавов позволило разработать и запатентовать способ получения ленты с электро-изоляционным покрытием, обладающей высоким уровнем магнитных свойств, который заключается в формировании ЭИП одновременно с термомагнитной обработкой, в результате чего существенно снижается объем доменов с ортогональной намагниченностью.
5. Исследование лент аморфных магнитомягких сплавов с разным структурным состоянием, уровнем магнитоупругой энергии, распределением намагниченности в ленте позволило выявить основные физические причины формирования низкочастотной аномалии магнитных потерь за цикл перемагничивания:
- наблюдаемое аномальное повышение магнитных потерь за цикл перемагничивания в области низких частот имеет вид резонансной кривой. Пик, наблюдаемый при частотах 20-40 Гц, формируется при участии 90-градусных доменных границ в процессе перемагничивания, имеет сложную мультиплетную структуру и удовлетворительно объясняется релаксацией в процессе перемагничивания осей разных типов пар элементов (например, 81-В, С-В, В-В и т.п.).
- оксидирование и наводороживание поверхности ленты приводит к формированию в области более высоких частот (40-90 Гц) двух серий пиков водородной и кислородной групп, формирование которых может быть обусловлено релаксацией в процессе перемагничивания осей пар элементов: (0-81, О-О, О-С, О-В), О-Н, (Н-8ц Н-С, Н-В, Н-Н).
- процессы вращения намагниченности и смещения 180-градусных доменных границ не приводят к формированию аномалии.
- аномалия магнитных потерь существенно снижается с уменьшением магнитоупругой энергии и объема, перемагничиваемого смещением 90-градусных доменных границ.
- процессы, приводящие к усилению неоднородного скачкообразного движения доменных границ (частичная поверхностная кристаллизация сплава, возрастание магнитоупругой энергии и объема доменов с ортогональной намагниченностью и т.п.), способствуют усилению аномалии частотной зависимости магнитных потерь за цикл.



1. Скулкина Н.А., Горланова М.А., Широкова (Степанова) Е.А., Иванов О.А., Ханжина Т.А. Влияние электроизоляционных покрытий на магнитные свойства и удельные магнитные потери аморфного сплава Fe81B13Si4C2 // Изв. ВУЗов “Черная металлургия”.- 1993.-№1.-С.58-62.
2. Скулкина Н.А., Горланова М.А., Иванов О.А., Широкова (Степанова) Е.А., Ханжина Т.А. Влияние электроизоляционного покрытия и термомагнитных обработок на магнитные свойства аморфного сплава Fe-B-S-C // ФММ.-1995.-Т79, вып.5.-С.38-46.
3. Скулкина Н.А., Горланова М.А., Иванов О.А., Попова И.А., Цветкова Л.Е., Степанова Е.А., Смышляев А.С., Маркин П.Е. Влияние лазерной обработки на магнитные свойства аморфного сплава Fe-B-Si-C//ФММ.-1997.-Т.83, вып.5.-С. 54-63.
4. Скулкина Н.А., Иванов О.А., Степанова Е.А., Глотова Л.С., Цепелев В.С. Влияние термических обработок на структуру и магнитные свойства лент аморфных магнитомягких сплавов// ФММ- 1998.-Т.86, вып.2.-С. 54-60.
5. Скулкина Н.А., Степанова Е.А., Иванов О.А. Аномалия частотной зависимости магнитных потерь. Г Влияние характера процессов намагничивания и распределения намагниченности на формирование аномалии // ФММ.-1998.-Т.86, вып.5.-С. 48-54.
6. Скулкина Н.А., Степанова Е.А., Иванов О.А. Аномалия частотной зависимости магнитных потерь. II. Влияние структурных факторов и стабилизации доменных границ на формирование аномалии// ФММ.-1998.-Т.86, вып.5.-С. 55-63.
7. Skulkina N.A., Stepanova Е.А., Gorlanova М.А., Ivanov O.A., Khanzhina Т.А. Mechanisms of influence of electroinsulation coatings on magnetic properties of amorphous soft magnetic alloys/ J. Phys. IV France.-1998.-N 8,- P. 2-67 - 2-70.
8. Скулкина H.A., Степанова E.A., Иванов O.A., Назарова Л.А. Формирование аномалии частотной зависимости магнитных потерь// ФММ.-2000.-Т.90, вып.1.-С.51-56.
9. Скулкина Н.А., Степанова Е.А., Иванов О.А., Назарова Л.А. Влияние химически активной среды на магнитные свойства быстрозакаленных сплавов на основе железа I. Среда отжига и магнитные свойства лент аморфных магнито мягких сплавов//ФММ,- 2001.-Т.91, вып.1.-С.17-23.
10. Скулкина Н.А., Степанова Е.А., Иванов О.А., Ханжина Т.А., Назарова Л.А.. Влияние химически активной среды на магнитные свойства быстрозакаленных сплавов на основе железа II. Морфология электроизоляционных покрытий и магнитные свойства лент аморфных магнитомягких сплавов. //ФММ.-2001.-Т.91, вып.2,- С.26-32.
11. Skulkina N.A., Stepanova Е.А., Ivanov О.А., Nazarova L.A.. The anomaly of frequency dependence of magnetic losses for rapidly quenched alloys// JMMM.-2000.-№215-216.-P.331-333.
12. Скулкина H.A., Иванов О.А., Степанова E.A. Оценочный расчет распределения намагниченности в лентах аморфных магнитомягких сплавов. // Изв. АН, сер. физ.-2001.-Т.65, №10.-С.1483-1486.
13. Степанова Е.А., Скулкина Н.А., Иванов О.А., Скрябина Н.Е., Цикарева О.В. Влияние водорода и кислорода на распределение намагниченности и магнитные свойства аморфных и нанокристаллических сплавов// Дислокационная структура и механические свойства металлов и сплавов: Тез.докл. ( Екатеринбург, 2002).
14. Ханжина Т.А., Скулкина Н.А., Широкова Е.А., Катаев В.А., Бамбуров В.Г. «Способ получения электроизоляционного покрытия на лентах аморфных сплавов» Заявка № 9402746 от 19.07.94. Решение о выдаче патента от 24.08.95., МКИЗ С23С 22/07, 22/23; C23D 5/00, 5/02.
5. СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ-.
I. Скулкина Н.А., Горланова М.А., Иванов О.А., Катаев В.А. Аномалия магнитных потерь аморфного сплава Fe-B-Si-C// Физ. мет. и металловед.-1991.-№8.-С. 132-139.
II. Иванова Е.В., Якимов И.И., Скулкина Н А., Катаев В.А. Контроль кристаллизации аморфных лент с помощью модифицированного метода рентгеновской дифракции/ Шестое Всероссийское совещание вузов по физике магнитных материалов: Тез. докл. (Иркутск, 23-26 июня 1992 г.) - Иркутск, 1992. С. 64-65.
III. Кекало И.Б., Самарин Б.А. Физическое металловедение прецизионных сплавов. Сплавы с особыми магнитными свойствами. - М.: Металлургия, 1989. - 496 с.
IV. Пенкаля Т. Очерки кристаллохимии,- Л.:Химия, 1974. - 496 с.
V. Штин А.П., Фотиев А.А., Галактионов А.Д., Ходос М.Я. Физико-химические свойства щелочных алюмофосфатных стекол //Физика и химия стекла, т. 2, № 1, 1976, с.80-88.
Частичная финансовая поддержка исследований осуществлена фондом «The U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF)», грант №.REC-005.
Подписано в печать. Формат 60x84 1/16 Бумага типографская. Объём 1 п.л. Тираж 100. Заказ № г. Екатеринбург, К-83, пр. Ленина, 51. Типолаборатория УрГУ.


Работу высылаем на протяжении 30 минут после оплаты.



Подобные работы


©2024 Cервис помощи студентам в выполнении работ