Актуальность темы исследования. Теория некорректно поставленных
задач и методы их решения относятся к важнейшим направлениям исследования современной вычислительной математики, что обусловлено потребностями
различных областей естествознания, техники и медицины, где эти проблемы
возникают в форме обратных задач.
Основы теории некорректно поставленных задач были заложены в 50–60 годы прошлого века в работах А. Н. Тихонова, В. К. Иванова, М. М. Лаврентьева
и дальнейшее ее развитие было продолжено их последователями и учениками.
В работах А. Б. Бакушинского1 сформулирован принцип итеративной регуляризации при построении процессов решения нелинейных некорректных задач.
Устойчивые методы решения линейных и нелинейных некорректных задач
исследовались в работах А. Л. Агеева, В. В. Васина, А. В. Гончарского, С. И. Кабанихина, М. Ю. Кокурина, А. С. Леонова, В. А. Морозова, В. П. Тананы,
А. Г. Яголы, H. W. Engl, M. Hanke, A. Neubauer, B. Kaltenbacher, O. Scherzer.
В Екатеринбурге в ИГФ УрО РАН разработана оригинальная методика
решения обратных задач гравиметрии и магнитометрии с использованием идей
регуляризации, построены алгоритмы на основе метода локальных поправок
(П. С. Мартышко2, И. Л. Пруткин, Н. В. Федорова, А. Л. Рублев и др.).
В ИММ УрО РАН разработаны и исследованы параллельные алгоритмы
на основе регуляризованных методов Ньютона, Левенберга – Марквардта и процессов градиентного типа (В. В. Васин3, Е. Н. Акимова4, Г. Я. Пересторонина,
Л. Ю. Тимерханова, В. Е. Мисилов)