СИНТЕЗ 2,2’-БИПИРИДИНОВ И ИХ АННЕЛИРОВАННЫХ АНАЛОГОВ
|
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
ПУБЛИКАЦИИ
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
ПУБЛИКАЦИИ
Актуальность и степень разработанности темы исследования.
Современные тенденции синтетической органической химии требуют перехода от многоступенчатых подходов получения целевых молекул к подходам, протекающим в условиях экономии атомов, реакционных стадий, растворителей и т.д. (так называемые РАБЕ-процессы), а также от реакций, катализируемых переходными металлами и их комплексами, к некатализируемым процессам при сохранении общей эффективности применяемых подходов. Такие подходы имеют неоспоримое преимущество для синтеза сложных гетероциклических соединений благодаря потенциальным терапевтическим свойствам последних (большинство из природных и синтетических лекарственных препаратов и физиологически-активных соединений имеют гетероциклическую природу), их перспективным координационно-химическим свойствам, в особенности по отношению к заряженным аналитам, а также уникальным фото-, электролюминесцентным и электрохимическим свойствам органических материалов, полученных с включением гетероциклических составляющих. Наиболее известными представителями гетероциклов, имеющих повсеместное практическое применение, являются 2,2’-бипиридины и их функционализированные производные, включая азааналоги. К настоящему времени методы получения 2,2’-бипиридинов относительно хорошо изучены. Тем не менее, для получения производных 2,2’-бипиридинов, например 2-(пиридин-2-ил)хинолинов и 1-(2- пиридил)изохинолинов, 2-(пиридин-2-ил)пиримидинов и (пиридин-2-ил)пиразинов, обычно используют многоступенчатые синтезы, основанные на комбинациях реакций кросс-сочетания, гетероциклизации, реакции Бишлера-Напиральского, Кренке, реакции с литийорганическими соединениями и многих других. Большинство из описанных выше процессов являются многостадийными, они требуют применения жестких условий и/или дорогостоящих реагентов и/или катализаторов. Особый интерес представляют олигопиридины, несущие в своем составе полиядерные (гетеро)ароматические заместители и фрагменты, например, (аза)пирен, (аза)фенантрен, (аза)трифенилен и т.д. благодаря своим уникальным фотофизическим свойствам, широким возможностям для дальнейшей функционализации, а также широкому спектру применения.
Цель работы заключается в поиске удобных и эффективных синтетических методов получения различных аннелированных 2,2’-бипиридинов, а также изучению их фотофизических и координационно-химических свойств.
Задачи исследования. Для достижения поставленной цели необходимо решить следующие задачи:
1) синтез новых производных 2,2’-бипиридинов, содержащих в своей структуре (поли)(гетеро)ароматические заместители и фрагменты;
2) синтез азааналогов полиароматических соединений;
3) изучение фотофизических характеристик полученных соединений;
4) изучение координационно-химических свойств полученных соединений в присутствии катионов металлов, а также электрон-дефицитных нейтральных молекул (например, нитроароматических (взрывчатых) веществ).
Научная новизна и теоретическая значимость
Предложены новые синтетические подходы к неописанным ранее полиядерным лигандам и флуорофорам 2,2’-бипиридинового ряда, а именно к 1-(пиридин-2- ил)изохинолинам в результате взаимодействия 3-(пиридин-2-ил)-1,2,4-триазинов с 1-морфолинциклогексеном и последующей окислительной ароматизацией циклогексенового фрагмента. Впервые литиевые соли полиароматических соединений (пирен, фенантрен, трифенилен) были использованы в качестве нуклеофилов в реакциях 8мН. Впервые предложен подход к 2-(пиридин-2-ил)моноазатрифениленам через их 1,2,4- триазиновые аналоги с возможностью модификации конечной структуры лигандов. Дополнен и значительно расширен метод построения 2-гетарилпиридинов из легкодоступных гидразонов изонитрозоацетофенона и иминоэфиров. Установлено, что в результате реакции нуклеофильного замещения водорода с помощью литиевой соли арилацетиленов можно ввести фрагменты как арилацетиленов, так и арилвинилов в положение С5 1,2,4-триазинового цикла в зависимости от условий реакции. Изучены фотофизические свойства (максимумы поглощения и испускания, квантовые выходы) полученных соединений.
Практическая ценность работы заключается в разработке простых и эффективных методов синтеза новых, ранее не описанных лигандов 2,2’-бипиридинового ряда из легкодоступных реагентов, включая аннелированные аналоги, например азатрифенилены (дибензо[/^А]хинолины) - перспективные хромофоры и хемосенсоры. Данные гетероциклы являются перспективными лигандами для хелатирования катионов металлов. Продемонстрировано влияние структуры лиганда на его координационно-химические свойства. Установлена возможность обнаружения различных высокоэнергетических нитроароматических соединений (пикриновая кислота, 2,4-ДНТ, ТНТ), а также катионов цинка синтезированными азатрифениленами в результате тушения их люминесценции.
Личный вклад автора состоит в поиске и изучении литературных источников о методах синтеза 2,2’-бипиридинов, их производных и аналогов, а также в непосредственном планировании и осуществлении экспериментов, обработке и анализе полученных данных. Автор принимал участие в написании научных статей и представлении полученных результатов на научных конференциях.
Методология и методы диссертационного исследования. В ходе выполнения данной работы проводили анализ литературных источников по теме исследования, направленный органический синтез с применением современных синтетических техник и методов. Структуры полученных соединений были подтверждены комплексом физико-химических и спектральных (ЯМР-спектроскопия, масс-спектрометрия, УФ- спектрометрия, РСА и др.) методов анализа.
Степень достоверности полученных результатов обеспечена применением передовых методов исследования и воспроизводимостью результатов экспериментов. Анализ состава, структуры и чистоты, изучение фотофизических характеристик полученных соединений осуществлялись на современных и сертифицированных приборах в Уральском федеральном университете им. первого Президента России Б.Н.Ельцина и Институте органического синтеза им. И. Я. Постовского УрО РАН.
Положения, выносимые на защиту:
■ дополненный и значительно расширенный метод получения а-незамещенных 2,2’- бипиридинов и их аналогов из соответствующих 1,2,4-триазинов, полученных через взаимодействие гетарилнитрилов и гидразонов изонитрозоацетофенона;
■ методы синтеза 2-(пиридин-2-ил)хинолинов и 1-(пиридин-2-ил)изохинолинов;
■ получение производных 1,2,4-триазинов и 2,2-бипиридинов, имеющих остатки полиядерных ароматических соединений, посредством реакций нуклеофильного замещения водорода в ряду 1,2,4-триазинов;
■ методы получения моноазатрифениленов (дибензо [/^]хинолинов) с расширенной системой сопряжения;
результаты фотофизических измерений для полученных соединений изучение координационно-химических свойств полученных соединений, в том в качестве хемосенсоров для обнаружения нитроароматических (взрывчатых)соединений и индикатора на катионы цинка.
Публикации. Основное содержание диссертации изложено в 21 публикации, в том числе в 9 статьях, опубликованных в рецензируемых научных журналах, рекомендованных ВАК РФ, а также в 12 тезисах материалов международных и российских конференций.
Апробация результатов была осуществлена на VII всероссийской конференции по химии полиядерных соединений и кластеров (Новосибирск, 2012), кластера конференций по органической химии «Оргхим-2013» (Санкт-Петербург, 2013), XVI молодежной школы-конференции по органической химии (Пятигорск, 2013), Уральском научном форуме «Современные проблемы органической химии» (Екатеринбург, 2014), XXVI международной Чугаевской конференции по координационной химии (Казань, 2014), I международной школы-конференции студентов, аспирантов и молодых ученых «Биомедицина, материалы и технологии XXI века» (Казань, 2015), 1st European Young Chemists Meeting (Португалия, Гимарайнш, 2016), ХХ Менделеевском съезде по общей и прикладной химии (Екатеринбург, 2016), RSC-NOST Symposium on Organic &Biomolecular Chemistry (Лидс, Великобритания, 2017)
Объем и структура работы. Диссертация выполнена на 115 страницах, состоит из введения, трех глав: литературный обзор (глава 1), обсуждение результатов (глава 2), экспериментальная часть (глава 3) и заключения. Диссертация содержит 80 схем, 11 таблиц, 25 рисунков. Библиографический список цитируемой литературы содержит 145 наименований.
Благодарность. Автор выражает глубокую и искреннюю благодарность к.х.н. Копчуку Д.С. за помощь в проведении исследований, доценту, к.х.н. Ельцову О.С. (Уральский федеральный университет, г. Екатеринбург) за проведение спектроскопии ЯМР, к.х.н. Ковалеву И.С. (Уральский федеральный университет, г. Екатеринбург) за проведение масс-спектрометрии, к.х.н. Слепухину П.А. (Институт органического синтеза УрО РАН, г. Екатеринбург) за проведение рентгеноструктурного анализа, Ким Г.А. (Институт органического синтеза УрО РАН, г. Екатеринбург) и Тания О.С. (Уральский федеральный университет, г. Екатеринбург) за проведение фотофизических измерений, всему коллективу кафедры органической и биомолекулярной химии ХТИ УрФУ во главе с заведующим кафедрой академиком РАН Чарушиным В.Н. и директору ХТИ УрФУ чл. - корр. Русинову В.Л. Работа выполнена при поддержке РНФ (грант №15-13-10033)
Современные тенденции синтетической органической химии требуют перехода от многоступенчатых подходов получения целевых молекул к подходам, протекающим в условиях экономии атомов, реакционных стадий, растворителей и т.д. (так называемые РАБЕ-процессы), а также от реакций, катализируемых переходными металлами и их комплексами, к некатализируемым процессам при сохранении общей эффективности применяемых подходов. Такие подходы имеют неоспоримое преимущество для синтеза сложных гетероциклических соединений благодаря потенциальным терапевтическим свойствам последних (большинство из природных и синтетических лекарственных препаратов и физиологически-активных соединений имеют гетероциклическую природу), их перспективным координационно-химическим свойствам, в особенности по отношению к заряженным аналитам, а также уникальным фото-, электролюминесцентным и электрохимическим свойствам органических материалов, полученных с включением гетероциклических составляющих. Наиболее известными представителями гетероциклов, имеющих повсеместное практическое применение, являются 2,2’-бипиридины и их функционализированные производные, включая азааналоги. К настоящему времени методы получения 2,2’-бипиридинов относительно хорошо изучены. Тем не менее, для получения производных 2,2’-бипиридинов, например 2-(пиридин-2-ил)хинолинов и 1-(2- пиридил)изохинолинов, 2-(пиридин-2-ил)пиримидинов и (пиридин-2-ил)пиразинов, обычно используют многоступенчатые синтезы, основанные на комбинациях реакций кросс-сочетания, гетероциклизации, реакции Бишлера-Напиральского, Кренке, реакции с литийорганическими соединениями и многих других. Большинство из описанных выше процессов являются многостадийными, они требуют применения жестких условий и/или дорогостоящих реагентов и/или катализаторов. Особый интерес представляют олигопиридины, несущие в своем составе полиядерные (гетеро)ароматические заместители и фрагменты, например, (аза)пирен, (аза)фенантрен, (аза)трифенилен и т.д. благодаря своим уникальным фотофизическим свойствам, широким возможностям для дальнейшей функционализации, а также широкому спектру применения.
Цель работы заключается в поиске удобных и эффективных синтетических методов получения различных аннелированных 2,2’-бипиридинов, а также изучению их фотофизических и координационно-химических свойств.
Задачи исследования. Для достижения поставленной цели необходимо решить следующие задачи:
1) синтез новых производных 2,2’-бипиридинов, содержащих в своей структуре (поли)(гетеро)ароматические заместители и фрагменты;
2) синтез азааналогов полиароматических соединений;
3) изучение фотофизических характеристик полученных соединений;
4) изучение координационно-химических свойств полученных соединений в присутствии катионов металлов, а также электрон-дефицитных нейтральных молекул (например, нитроароматических (взрывчатых) веществ).
Научная новизна и теоретическая значимость
Предложены новые синтетические подходы к неописанным ранее полиядерным лигандам и флуорофорам 2,2’-бипиридинового ряда, а именно к 1-(пиридин-2- ил)изохинолинам в результате взаимодействия 3-(пиридин-2-ил)-1,2,4-триазинов с 1-морфолинциклогексеном и последующей окислительной ароматизацией циклогексенового фрагмента. Впервые литиевые соли полиароматических соединений (пирен, фенантрен, трифенилен) были использованы в качестве нуклеофилов в реакциях 8мН. Впервые предложен подход к 2-(пиридин-2-ил)моноазатрифениленам через их 1,2,4- триазиновые аналоги с возможностью модификации конечной структуры лигандов. Дополнен и значительно расширен метод построения 2-гетарилпиридинов из легкодоступных гидразонов изонитрозоацетофенона и иминоэфиров. Установлено, что в результате реакции нуклеофильного замещения водорода с помощью литиевой соли арилацетиленов можно ввести фрагменты как арилацетиленов, так и арилвинилов в положение С5 1,2,4-триазинового цикла в зависимости от условий реакции. Изучены фотофизические свойства (максимумы поглощения и испускания, квантовые выходы) полученных соединений.
Практическая ценность работы заключается в разработке простых и эффективных методов синтеза новых, ранее не описанных лигандов 2,2’-бипиридинового ряда из легкодоступных реагентов, включая аннелированные аналоги, например азатрифенилены (дибензо[/^А]хинолины) - перспективные хромофоры и хемосенсоры. Данные гетероциклы являются перспективными лигандами для хелатирования катионов металлов. Продемонстрировано влияние структуры лиганда на его координационно-химические свойства. Установлена возможность обнаружения различных высокоэнергетических нитроароматических соединений (пикриновая кислота, 2,4-ДНТ, ТНТ), а также катионов цинка синтезированными азатрифениленами в результате тушения их люминесценции.
Личный вклад автора состоит в поиске и изучении литературных источников о методах синтеза 2,2’-бипиридинов, их производных и аналогов, а также в непосредственном планировании и осуществлении экспериментов, обработке и анализе полученных данных. Автор принимал участие в написании научных статей и представлении полученных результатов на научных конференциях.
Методология и методы диссертационного исследования. В ходе выполнения данной работы проводили анализ литературных источников по теме исследования, направленный органический синтез с применением современных синтетических техник и методов. Структуры полученных соединений были подтверждены комплексом физико-химических и спектральных (ЯМР-спектроскопия, масс-спектрометрия, УФ- спектрометрия, РСА и др.) методов анализа.
Степень достоверности полученных результатов обеспечена применением передовых методов исследования и воспроизводимостью результатов экспериментов. Анализ состава, структуры и чистоты, изучение фотофизических характеристик полученных соединений осуществлялись на современных и сертифицированных приборах в Уральском федеральном университете им. первого Президента России Б.Н.Ельцина и Институте органического синтеза им. И. Я. Постовского УрО РАН.
Положения, выносимые на защиту:
■ дополненный и значительно расширенный метод получения а-незамещенных 2,2’- бипиридинов и их аналогов из соответствующих 1,2,4-триазинов, полученных через взаимодействие гетарилнитрилов и гидразонов изонитрозоацетофенона;
■ методы синтеза 2-(пиридин-2-ил)хинолинов и 1-(пиридин-2-ил)изохинолинов;
■ получение производных 1,2,4-триазинов и 2,2-бипиридинов, имеющих остатки полиядерных ароматических соединений, посредством реакций нуклеофильного замещения водорода в ряду 1,2,4-триазинов;
■ методы получения моноазатрифениленов (дибензо [/^]хинолинов) с расширенной системой сопряжения;
результаты фотофизических измерений для полученных соединений изучение координационно-химических свойств полученных соединений, в том в качестве хемосенсоров для обнаружения нитроароматических (взрывчатых)соединений и индикатора на катионы цинка.
Публикации. Основное содержание диссертации изложено в 21 публикации, в том числе в 9 статьях, опубликованных в рецензируемых научных журналах, рекомендованных ВАК РФ, а также в 12 тезисах материалов международных и российских конференций.
Апробация результатов была осуществлена на VII всероссийской конференции по химии полиядерных соединений и кластеров (Новосибирск, 2012), кластера конференций по органической химии «Оргхим-2013» (Санкт-Петербург, 2013), XVI молодежной школы-конференции по органической химии (Пятигорск, 2013), Уральском научном форуме «Современные проблемы органической химии» (Екатеринбург, 2014), XXVI международной Чугаевской конференции по координационной химии (Казань, 2014), I международной школы-конференции студентов, аспирантов и молодых ученых «Биомедицина, материалы и технологии XXI века» (Казань, 2015), 1st European Young Chemists Meeting (Португалия, Гимарайнш, 2016), ХХ Менделеевском съезде по общей и прикладной химии (Екатеринбург, 2016), RSC-NOST Symposium on Organic &Biomolecular Chemistry (Лидс, Великобритания, 2017)
Объем и структура работы. Диссертация выполнена на 115 страницах, состоит из введения, трех глав: литературный обзор (глава 1), обсуждение результатов (глава 2), экспериментальная часть (глава 3) и заключения. Диссертация содержит 80 схем, 11 таблиц, 25 рисунков. Библиографический список цитируемой литературы содержит 145 наименований.
Благодарность. Автор выражает глубокую и искреннюю благодарность к.х.н. Копчуку Д.С. за помощь в проведении исследований, доценту, к.х.н. Ельцову О.С. (Уральский федеральный университет, г. Екатеринбург) за проведение спектроскопии ЯМР, к.х.н. Ковалеву И.С. (Уральский федеральный университет, г. Екатеринбург) за проведение масс-спектрометрии, к.х.н. Слепухину П.А. (Институт органического синтеза УрО РАН, г. Екатеринбург) за проведение рентгеноструктурного анализа, Ким Г.А. (Институт органического синтеза УрО РАН, г. Екатеринбург) и Тания О.С. (Уральский федеральный университет, г. Екатеринбург) за проведение фотофизических измерений, всему коллективу кафедры органической и биомолекулярной химии ХТИ УрФУ во главе с заведующим кафедрой академиком РАН Чарушиным В.Н. и директору ХТИ УрФУ чл. - корр. Русинову В.Л. Работа выполнена при поддержке РНФ (грант №15-13-10033)
1. Предложен новый синтетический подход к (3),4-диарил-1-(пиридин-2- ил)изохинолинам в результате ароматизации соответствующих тетрагидроизохинолинов, образование которых из (5),6-диарил-3-(пиридин-2-ил)-1,2,4-триазинов было эффективно осуществлено в результате реакции аза-Дильса-Альдера с обратными электронными требованиями в условиях отсутствия растворителя.
2. Предложен эффективный подход к синтезу пиридилхинолинов, содержащих атомы фтора в составе хинолинового фрагмента и/или циклопентеновый фрагмент и изучены их фотофизические свойства. Аннелированный фрагмент циклопентена привел к длинноволновому смещению максимумов испускания, а введение атомов фтора привело к гипсохромному сдвигу.
3. Синтезированы неописанные ранее 6-арил-5-фенил-2,2’-бипиридины, содержащие остатки полиароматических аренов (пирен, фенантрен, трифенилен), в результате нуклеофильного замещения водорода в ряду 1,2,4-триазинов и последующей реакции аза-Дильса-Альдера.
4. Разработан удобный метод введения остатка арил-транс-стильбенов в положение С5 6-арил-3-(пиридил-2-ил)-1,2,4-триазинов с использованием в качестве нуклеофила в реакции БИ литиевых солей арилацетиленов. Установлено, что в присутствии окислителя ПЭР в результате нуклеофильного замещения водорода селективно образуется 6-арил-5- (арилэтинил)-3-(пиридин-2-ил)-1,2,4-триазин. На основе полученных соединений были синтезированы соответствующие лиганды 2,2’-бипиридинового ряда.
5. Дополнен и значительно расширен потенциал метода получения 3-гетарил-6- фенил-1,2,4-триазинов из гидразона изонитрозоацетофенона и иминоэфиров, полученных in situиз гетарилнитрилов. Метод позволил получить аналоги а-незамещенных-2,2’- бипиридинов из легкодоступных реагентов.
6. Предложены методы синтеза неописанных ранее 2-(пиридин-2- ил) азатрифениленов, являющихся аналогами 2,2’-бипиридина и изучены их фотофизические свойства. Установлено, что увеличение системы сопряжения этих соединений в результате реакций кросс-сочетания по Сузуки во фрагменте азатрифенилена, либо путем аннелирования дополнительных ароматических колец к фрагменту пиридина приводит к значительному длинноволновому смещению максимумов как поглощения, так и испускания, и в ряде случаев имеет место значительное увеличение квантового выхода люминесценции. Полученные результаты могут быть использованы для тонкой настройки фотофизических характеристик соединений данного ряда.
7. Установлено, что в присутствии нитроароматических соединений (пикриновая кислота, 2,4-ДНТ и ТНТ) происходит тушение люминесценции моноазатрифениленов в растворе ацетонитрила. Полученные соединения могут быть использованы в качестве сенсоров для визуального обнаружения нитроароматических соединений (ВВ). Кроме того, показана возможность использования подобных соединений в качестве флуоресцентных индикаторов на катионы Zn2+благодаря эффективному тушению люминесценции сенсора в растворе ацетонитрила
Перспективы дальнейшей разработки темы заключается в выявлении из разработанных соединений или их структурных аналогов таких, способных изменять свои электро- и фотолюминесцентные свойства в присутствие различных анионов, катионов металлов или других нейтральных молекул. Перспективным направлением развития темы исследования является получение сенсоров на другие виды взрывчатых веществ, а также исследование синтезированных соединений на потенциальную биологическую активность. Кроме того, дальнейшая разработка новых методов синтеза гетероциклических структур без использования дорогостоящих катализаторов и реагентов также представляет интерес как источник получения неописанных соединений с перспективными как фотофизическими, так и терапевтическими свойствами.
2. Предложен эффективный подход к синтезу пиридилхинолинов, содержащих атомы фтора в составе хинолинового фрагмента и/или циклопентеновый фрагмент и изучены их фотофизические свойства. Аннелированный фрагмент циклопентена привел к длинноволновому смещению максимумов испускания, а введение атомов фтора привело к гипсохромному сдвигу.
3. Синтезированы неописанные ранее 6-арил-5-фенил-2,2’-бипиридины, содержащие остатки полиароматических аренов (пирен, фенантрен, трифенилен), в результате нуклеофильного замещения водорода в ряду 1,2,4-триазинов и последующей реакции аза-Дильса-Альдера.
4. Разработан удобный метод введения остатка арил-транс-стильбенов в положение С5 6-арил-3-(пиридил-2-ил)-1,2,4-триазинов с использованием в качестве нуклеофила в реакции БИ литиевых солей арилацетиленов. Установлено, что в присутствии окислителя ПЭР в результате нуклеофильного замещения водорода селективно образуется 6-арил-5- (арилэтинил)-3-(пиридин-2-ил)-1,2,4-триазин. На основе полученных соединений были синтезированы соответствующие лиганды 2,2’-бипиридинового ряда.
5. Дополнен и значительно расширен потенциал метода получения 3-гетарил-6- фенил-1,2,4-триазинов из гидразона изонитрозоацетофенона и иминоэфиров, полученных in situиз гетарилнитрилов. Метод позволил получить аналоги а-незамещенных-2,2’- бипиридинов из легкодоступных реагентов.
6. Предложены методы синтеза неописанных ранее 2-(пиридин-2- ил) азатрифениленов, являющихся аналогами 2,2’-бипиридина и изучены их фотофизические свойства. Установлено, что увеличение системы сопряжения этих соединений в результате реакций кросс-сочетания по Сузуки во фрагменте азатрифенилена, либо путем аннелирования дополнительных ароматических колец к фрагменту пиридина приводит к значительному длинноволновому смещению максимумов как поглощения, так и испускания, и в ряде случаев имеет место значительное увеличение квантового выхода люминесценции. Полученные результаты могут быть использованы для тонкой настройки фотофизических характеристик соединений данного ряда.
7. Установлено, что в присутствии нитроароматических соединений (пикриновая кислота, 2,4-ДНТ и ТНТ) происходит тушение люминесценции моноазатрифениленов в растворе ацетонитрила. Полученные соединения могут быть использованы в качестве сенсоров для визуального обнаружения нитроароматических соединений (ВВ). Кроме того, показана возможность использования подобных соединений в качестве флуоресцентных индикаторов на катионы Zn2+благодаря эффективному тушению люминесценции сенсора в растворе ацетонитрила
Перспективы дальнейшей разработки темы заключается в выявлении из разработанных соединений или их структурных аналогов таких, способных изменять свои электро- и фотолюминесцентные свойства в присутствие различных анионов, катионов металлов или других нейтральных молекул. Перспективным направлением развития темы исследования является получение сенсоров на другие виды взрывчатых веществ, а также исследование синтезированных соединений на потенциальную биологическую активность. Кроме того, дальнейшая разработка новых методов синтеза гетероциклических структур без использования дорогостоящих катализаторов и реагентов также представляет интерес как источник получения неописанных соединений с перспективными как фотофизическими, так и терапевтическими свойствами.
Подобные работы
- СИНТЕЗ 2,2’-БИПИРИДИНОВ И ИХ АННЕЛИРОВАННЫХ АНАЛОГОВ
Диссертации (РГБ), химия. Язык работы: Русский. Цена: 4275 р. Год сдачи: 2018 - РЕАКЦИИ ПЕНТАФТОРФЕНИЛЛИТИЯ С АЗАГЕТЕРОЦИКЛАМИ И СОПУТСТВУЮЩИЕ ПРЕВРАЩЕНИЯ В СИНТЕЗЕ ЛИГАНДОВ И ФОТОАКТИВНЫХ СОЕДИНЕНИЙ
Авторефераты (РГБ), химия. Язык работы: Русский. Цена: 250 р. Год сдачи: 2022 - РЕАКЦИИ ПЕНТАФТОРФЕНИЛЛИТИЯ С АЗАГЕТЕРОЦИКЛАМИ И СОПУТСТВУЮЩИЕ ПРЕВРАЩЕНИЯ В СИНТЕЗЕ ЛИГАНДОВ И ФОТОАКТИВНЫХ СОЕДИНЕНИЙ
Диссертации (РГБ), химия. Язык работы: Русский. Цена: 4350 р. Год сдачи: 2022 - ПРОИЗВОДНЫЕ н-ДИГИДРОКСИБЕНЗОПИРОНОВ И АКРИДОНОВ КАК НУКЛЕОФИЛЬНЫЕ АГЕНТЫ В РЕАКЦИЯХ 8^
Авторефераты (РГБ), химия. Язык работы: Русский. Цена: 250 р. Год сдачи: 2020 - ПРОИЗВОДНЫЕ н-ДИГИДРОКСИБЕНЗОПИРОНОВ И АКРИДОНОВ КАК НУКЛЕОФИЛЬНЫЕ АГЕНТЫ В РЕАКЦИЯХ SHN
Магистерская диссертация, химия. Язык работы: Русский. Цена: 5500 р. Год сдачи: 2020 - ТРАНСФОРМАЦИИ 3,5-ЗАМЕЩЕННЫХ 1,2,4-ТРИАЗИНОВ В РЕАКЦИЯХ С АРИНАМИ КАК РАЦИОНАЛЬНЫЙ ПОДХОД К НОВЫМ ФЛУОРОФОРАМ
Авторефераты (РГБ), химия. Язык работы: Русский. Цена: 250 р. Год сдачи: 2021



