АНАЛИЗ СТОХАСТИЧЕСКИХ МОДЕЛЕЙ ЖИВЫХ СИСТЕМ С ДИСКРЕТНЫМ ВРЕМЕНЕМ
|
ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ 6
ВВЕДЕНИЕ 8
ОСНОВНАЯ ЧАСТЬ 11
1 Одномерная модель нейронной активности 11
1.1 Стохастическая модель Рулькова 11
1.2 Анализ стохастической чувствительности 13
2 Одномерная модель популяционной динамики 16
2.1 Детерминированный случай 16
2.2 Стохастический случай 18
3 Двумерная модель популяционной динамики 25
3.1 Детерминированный случай 25
3.2 Стохастический случай 29
ЗАКЛЮЧЕНИЕ 38
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 39
СПИСОК ПУБЛИКАЦИЙ
ВВЕДЕНИЕ 8
ОСНОВНАЯ ЧАСТЬ 11
1 Одномерная модель нейронной активности 11
1.1 Стохастическая модель Рулькова 11
1.2 Анализ стохастической чувствительности 13
2 Одномерная модель популяционной динамики 16
2.1 Детерминированный случай 16
2.2 Стохастический случай 18
3 Двумерная модель популяционной динамики 25
3.1 Детерминированный случай 25
3.2 Стохастический случай 29
ЗАКЛЮЧЕНИЕ 38
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 39
СПИСОК ПУБЛИКАЦИЙ
Область научных исследований, связанная с моделированием и анализом различных живых систем, в последние годы привлекает внимание не только биологов, но и математиков. Интерес к данным моделям с математической точки зрения прежде всего связан с необходимостью их описания языком динамических систем. И здесь основная задача заключается в описании разнообразных бифуркаций и анализ устанавливающихся режимов как регулярных, так и хаотических.
Начав с моделей нейронной динамики, необходимо заметить, что численные исследования нейронной активности обычно основаны либо на физиологических, либо на феноменологических моделях. Большинство рассматриваемых феноменологических моделей описываются системой дифференциальных уравнений третьего порядка и выше (модель Ходжкина-Хаксли [1] и модель Хиндмарша-Роуза [2]). Такие системы позволяют моделировать сложное поведение нейрона: спайки и бёрсты. С математической точки зрения такое поведение означает переход от равновесия к периодическим или хаотическим режимам. В то же время для моделирования различных режимов колебаний с использованием дискретных систем можно ограничиться системами меньшей размерности. В этом случае нейронная активность чаще всего может быть описана системой, состоящей по крайней мере из двух временных шкал: быстрая, соответствующая потенциалам действия, и медленная, соответствующая изменению концентрации открытия ионных каналов [3, 4, 5, 6]. Также часто изучаются модели, где вторая медленная переменная принимается как константа. Благодаря этому предположению система становится одномерной [5, 7, 8]. В силу функционирования реальной живой системы в присутствии случайного возмущения динамика может не только существенно усложняться, но и демонстрировать явления, которые не наблюдаются в детерминированных системах. Случайные составляющие чаще всего подразделяют на внешние факторы (аддитивный шум) и внутренние (параметрический шум) [9, 10, 11]. В задачах, объединяющих в себе нелинейность и стохастическую составляющую, хорошо зарекомендовал себя метод функции стохастической чувствительности, используемый для изучения отклика аттракторов на вносимый шум и описания стохастических феноменов [12, 13, 14, 15, 16, 17]. За последние годы этот метод не единожды применялся для одномерных отображений, задаваемых гладкими функциями [18, 19, 20]. А также в работах [21, 3] на примере модели нейронной активности Рулькова показано, что функция стохастической чувствительности и связанный с ней метод доверительных областей могут быть применены для кусочно-гладких отображений с целью описания феноменов, наблюдаемых в параметрических зонах регулярных аттракторов. В первой главе данной работы на основе метода функции стохастической чувствительности изучается генерация индуцированных шумом спайков в одномерной модели Рулькова.
Природа кусочно-гладких отображений приводит динамику описываемой модели к новым бифуркациям, не наблюдаемым в гладких системах, например, удвоение кусочности хаотического аттрактора и бифуркация столкновения с границей. Теория кусочно-гладких отображений в настоящее время широко развивается и, например, в работах [22, 23, 24, 25] дается описание этих бифуркаций, а также инструментария, который представляется полезным в описании данных явлений.
Также настоящая работа посвящена исследованию моделей популяционной динамики. В работах [26, 27, 28, 29] рассмотрены популяционные модели, демонстрирующие различные динамические режимы. Наряду с моделями, задаваемыми гладкими отображениями, большое внимание привлекают кусочно-гладкие отображения как с разрывами, так и без. В работах [30, 31, 32] описываются примеры моделей популяций такого типа. При наличии случайного возмущения важным является изучение воздействия шума с целью не допустить нежелательных экологических сдвигов, вызванных случайными факторами. Таким образом, целью второй главы данной работы является как описание бифуркаций кусочно-гладких отображений, так и изучение отклика одномерной популяционной модели на вносимое случайное возмущение. Благодаря методу функции стохастической чувствительности описывается феномен индуцированного шумом вымирания, а также находятся критерии, необходимые для достижения этого режима.
Говоря о системах, описывающих поведение взаимодействующих популяций, следует упомянуть о моделях, которые учитывают различные факторы взаимодействия, такие как совместная охота, разделение популяции по полу или возрасту [33, 34, 35, 36, 37]. А также традиционно используются различные функции для описания взаимодействия популяции жертв и хищников (функции Холлинга различного типа) [38]. В моделях с дискретным временем даже на первый взгляд простейший вид нелинейности приводит к возникновению различных сложных режимов динамики [39, 40, 41]. Главным инструментом становится математическая теория бифуркаций как аттракторов, так и их бассейнов [42]. Однако, как упоминалось выше, существование живых систем невозможно без влияния на их деятельность различных факторов, обладающих случайной природой.
В третьей главе данной работы проводится анализ возможных режимов, в первую очередь, детерминированной модели Лотки-Вольтерры с дискретным временем в зависимости от параметров системы. Ранее в работах [39, 40, 43] проводился параметрический анализ существования и устойчивости равновесий данной модели с построением однопараметрических бифуркационных диаграмм и примеров фазовых портретов. В работе [43] помимо этого найдены условия для возникновения Флип бифуркации и Неймарка-Саккера, а также описывается метод управления хаосом. В настоящей же работе демонстрируется бифуркационный сценарий на двупараметрической карте режимов и показывается сложная структура бассейнов притяжения аттракторов. Наряду с детерминированной системой в третьей главе подробно изучается стохастическая, описывающая влияние внешнего случайного воздействия. Ранее данная модель не изучалась в стохастической интерпретации. Аналогично, опираясь на технику функции стохастической чувствительности [44, 45], исследуется анализ разброса случайных состояний вокруг регулярных, периодических, квазипериодических и хаотических ат-тракторов.
Начав с моделей нейронной динамики, необходимо заметить, что численные исследования нейронной активности обычно основаны либо на физиологических, либо на феноменологических моделях. Большинство рассматриваемых феноменологических моделей описываются системой дифференциальных уравнений третьего порядка и выше (модель Ходжкина-Хаксли [1] и модель Хиндмарша-Роуза [2]). Такие системы позволяют моделировать сложное поведение нейрона: спайки и бёрсты. С математической точки зрения такое поведение означает переход от равновесия к периодическим или хаотическим режимам. В то же время для моделирования различных режимов колебаний с использованием дискретных систем можно ограничиться системами меньшей размерности. В этом случае нейронная активность чаще всего может быть описана системой, состоящей по крайней мере из двух временных шкал: быстрая, соответствующая потенциалам действия, и медленная, соответствующая изменению концентрации открытия ионных каналов [3, 4, 5, 6]. Также часто изучаются модели, где вторая медленная переменная принимается как константа. Благодаря этому предположению система становится одномерной [5, 7, 8]. В силу функционирования реальной живой системы в присутствии случайного возмущения динамика может не только существенно усложняться, но и демонстрировать явления, которые не наблюдаются в детерминированных системах. Случайные составляющие чаще всего подразделяют на внешние факторы (аддитивный шум) и внутренние (параметрический шум) [9, 10, 11]. В задачах, объединяющих в себе нелинейность и стохастическую составляющую, хорошо зарекомендовал себя метод функции стохастической чувствительности, используемый для изучения отклика аттракторов на вносимый шум и описания стохастических феноменов [12, 13, 14, 15, 16, 17]. За последние годы этот метод не единожды применялся для одномерных отображений, задаваемых гладкими функциями [18, 19, 20]. А также в работах [21, 3] на примере модели нейронной активности Рулькова показано, что функция стохастической чувствительности и связанный с ней метод доверительных областей могут быть применены для кусочно-гладких отображений с целью описания феноменов, наблюдаемых в параметрических зонах регулярных аттракторов. В первой главе данной работы на основе метода функции стохастической чувствительности изучается генерация индуцированных шумом спайков в одномерной модели Рулькова.
Природа кусочно-гладких отображений приводит динамику описываемой модели к новым бифуркациям, не наблюдаемым в гладких системах, например, удвоение кусочности хаотического аттрактора и бифуркация столкновения с границей. Теория кусочно-гладких отображений в настоящее время широко развивается и, например, в работах [22, 23, 24, 25] дается описание этих бифуркаций, а также инструментария, который представляется полезным в описании данных явлений.
Также настоящая работа посвящена исследованию моделей популяционной динамики. В работах [26, 27, 28, 29] рассмотрены популяционные модели, демонстрирующие различные динамические режимы. Наряду с моделями, задаваемыми гладкими отображениями, большое внимание привлекают кусочно-гладкие отображения как с разрывами, так и без. В работах [30, 31, 32] описываются примеры моделей популяций такого типа. При наличии случайного возмущения важным является изучение воздействия шума с целью не допустить нежелательных экологических сдвигов, вызванных случайными факторами. Таким образом, целью второй главы данной работы является как описание бифуркаций кусочно-гладких отображений, так и изучение отклика одномерной популяционной модели на вносимое случайное возмущение. Благодаря методу функции стохастической чувствительности описывается феномен индуцированного шумом вымирания, а также находятся критерии, необходимые для достижения этого режима.
Говоря о системах, описывающих поведение взаимодействующих популяций, следует упомянуть о моделях, которые учитывают различные факторы взаимодействия, такие как совместная охота, разделение популяции по полу или возрасту [33, 34, 35, 36, 37]. А также традиционно используются различные функции для описания взаимодействия популяции жертв и хищников (функции Холлинга различного типа) [38]. В моделях с дискретным временем даже на первый взгляд простейший вид нелинейности приводит к возникновению различных сложных режимов динамики [39, 40, 41]. Главным инструментом становится математическая теория бифуркаций как аттракторов, так и их бассейнов [42]. Однако, как упоминалось выше, существование живых систем невозможно без влияния на их деятельность различных факторов, обладающих случайной природой.
В третьей главе данной работы проводится анализ возможных режимов, в первую очередь, детерминированной модели Лотки-Вольтерры с дискретным временем в зависимости от параметров системы. Ранее в работах [39, 40, 43] проводился параметрический анализ существования и устойчивости равновесий данной модели с построением однопараметрических бифуркационных диаграмм и примеров фазовых портретов. В работе [43] помимо этого найдены условия для возникновения Флип бифуркации и Неймарка-Саккера, а также описывается метод управления хаосом. В настоящей же работе демонстрируется бифуркационный сценарий на двупараметрической карте режимов и показывается сложная структура бассейнов притяжения аттракторов. Наряду с детерминированной системой в третьей главе подробно изучается стохастическая, описывающая влияние внешнего случайного воздействия. Ранее данная модель не изучалась в стохастической интерпретации. Аналогично, опираясь на технику функции стохастической чувствительности [44, 45], исследуется анализ разброса случайных состояний вокруг регулярных, периодических, квазипериодических и хаотических ат-тракторов.
В работе представлены результаты исследования следующих моделей: одномерная модель нейронной активности Рулькова, одномерная популяционная модель и двумерная модель популяционной динамики Лотки-Вольтерры.
В первой главе данной работы для детерминированной модели были найдены параметрические зоны существования аттракторов системы, была дана классификация возможных динамических режимов при различных значениях параметров а и ф. Используя метод функций стохастической чувствительности, исследованы два механизма генерации спайков, вызванные добавлением случайного возмущения в управляющий параметр ф. Также благодаря методу доверительных областей была найдена минимальная интенсивность шума, которой достаточно для генерации спайков. Изучена природа возникновения спайков в системе, а также описаны основные характеристики межспайковых интервалов.
Во второй главе данной работы изучено влияние случайного возмущения двух типов (аддитивный и параметрический шум) на одномерную кусочно-гладкую модель, описывающую динамику численности одной популяции. Была построена карта динамических режимов данной модели, а также изучены бифуркационные диаграммы, показано самоподобие. Впервые метод функции стохастической чувствительности и техника доверительных областей были использованы для описания хаотического аттрактора стохастической модели популяционной динамики, описываемой кусочно-гладким отображением, при случайном воздействии как аддитивного, так и параметрического вида. Найдены критерии вымирания популяции.
В третьей главе рассмотрены детерминированный и стохастический случаи популяционной модели типа «хищник-жертва» с дискретным временем. Изучены равновесия, их устойчивость и бифуркационные сценарии, представленные картой динамических режимов в зависимости от параметров а, Ь, с и d.Построены бифуркационные диаграммы и бассейны притяжения изучаемых аттракторов. Обнаружено, что не для всех начальных значений плотностей популяций система может прийти в стационарный режим, возможен также неограниченный рост популяций. Изучены зоны параметра а, при которых поведение модели является хаотическим. В случае воздействия на систему внешнего аддитивного шума исследована чувствительность таких аттракторов данной модели, как равновесие, циклы, замкнутая инвариантная кривая и хаотический аттрактор. Были построены доверительные эллипсы и полосы рассеивания, позволяющие описать разброс случайных состояний. Показана зависимость функции стохастической чувствительности аттракторов от бифуркационных параметров. Также была найдена зависимость интенсивности шума от параметра а, при которой в системе наблюдается вымирание популяции хищников.
В первой главе данной работы для детерминированной модели были найдены параметрические зоны существования аттракторов системы, была дана классификация возможных динамических режимов при различных значениях параметров а и ф. Используя метод функций стохастической чувствительности, исследованы два механизма генерации спайков, вызванные добавлением случайного возмущения в управляющий параметр ф. Также благодаря методу доверительных областей была найдена минимальная интенсивность шума, которой достаточно для генерации спайков. Изучена природа возникновения спайков в системе, а также описаны основные характеристики межспайковых интервалов.
Во второй главе данной работы изучено влияние случайного возмущения двух типов (аддитивный и параметрический шум) на одномерную кусочно-гладкую модель, описывающую динамику численности одной популяции. Была построена карта динамических режимов данной модели, а также изучены бифуркационные диаграммы, показано самоподобие. Впервые метод функции стохастической чувствительности и техника доверительных областей были использованы для описания хаотического аттрактора стохастической модели популяционной динамики, описываемой кусочно-гладким отображением, при случайном воздействии как аддитивного, так и параметрического вида. Найдены критерии вымирания популяции.
В третьей главе рассмотрены детерминированный и стохастический случаи популяционной модели типа «хищник-жертва» с дискретным временем. Изучены равновесия, их устойчивость и бифуркационные сценарии, представленные картой динамических режимов в зависимости от параметров а, Ь, с и d.Построены бифуркационные диаграммы и бассейны притяжения изучаемых аттракторов. Обнаружено, что не для всех начальных значений плотностей популяций система может прийти в стационарный режим, возможен также неограниченный рост популяций. Изучены зоны параметра а, при которых поведение модели является хаотическим. В случае воздействия на систему внешнего аддитивного шума исследована чувствительность таких аттракторов данной модели, как равновесие, циклы, замкнутая инвариантная кривая и хаотический аттрактор. Были построены доверительные эллипсы и полосы рассеивания, позволяющие описать разброс случайных состояний. Показана зависимость функции стохастической чувствительности аттракторов от бифуркационных параметров. Также была найдена зависимость интенсивности шума от параметра а, при которой в системе наблюдается вымирание популяции хищников.



