Перспективы и эффективность применения сжиженного природного газа (СПГ) как моторного топлива подтверждается современными исследованиями, но с практической стороны данная тенденция затрудняется недостаточной инфраструктурой и конструктивными особенностями криогенных баков. Специфичность данных систем, заключающаяся в комплексном влиянии условий (Р,Т) криогенных технологий и физико-химических свойств топлива, обуславливает необходимость в повышенной безопасности при эксплуатации и особые требования к проектированию и конструированию. Поэтому актуальным остается выбор конструктивных решений, позволяющих достичь эффективного и безопасного применения СПГ в автомобильном баке.
Цель работы – проектирование автомобильного топливного бака для СПГ.
Для достижения цели были определены следующие задачи:
- провести анализ применения СПГ как моторного топлива и конструкций автомобильных баков СПГ;
- провести прочностные, тепловые и технологические расчеты автомобильного бака СПГ;
- подобрать основное и вспомогательное оборудование для топливного бака.
Научная новизна работы представлена уточнением технологических задач при выборе конструктивных решений автомобильного бака СПГ.
Теоретическая значимость выражается в создании предпосылок для повышения эффективности при внедрении автомобильных баков СПГ в эксплуатацию за счет прогнозирования условий безопасной и надежной работы, оптимальных инженерных решений и соответствующего оборудования.
Практическая значимость результатов работы заключается в перспективе их применения на производствах, занимающихся конструированием криогенных топливных систем.
В работе применялись теоретические и эмпирические методы исследования.
1. ГОСТ Р 52857.1–2007 Сосуды и аппараты, Нормы и методы расчета на прочность. Общие требования.
2. ГОСТ Р 52857.2–2007 Сосуды и аппараты, Нормы и методы расчета на прочность. Расчет цилиндрических и конических обечаек, выпуклых и плоских днищ и крышек.
3. ГОСТ 6533–78 Днища эллиптические отбортованные стальные для сосудов, аппаратов и котлов.
4. ГОСТ Р 56218-2014 Автомобильные транспортные средства, работающие на сжиженном природном газе. Криогенные системы питания.
5. ГОСТ 3826-82 Сетка тканная с квадратными ячейками.
6. ГОСТ 12.2.085-2002 Сосуды, работающие под давлением. Клапаны предохранительные. Требования безопасности.
7. ГОСТ 12532-88 Клапаны предохранительные прямого действия.
8. ТУ 6-16-2352-2015 Активированный уголь СКТ-4.
9. Акулов Л.А. и др. Теплофизические свойства и фазовое равновесие криопродуктов. Справ. – СПб.: СПбГУНиПТ, 2009. – 567 с.
10. Буйлова, М. В. Перспективы применения сжиженного природного газа в качестве топлива грузовых автомобилей / М. В. Буйлова, Р. А. Вилаев // Информационные технологии и инновации на транспорте: Материалы 5-ой Международной научно-практической конференции, Орёл, 22–23 мая 2019 года / Под общей редакцией А.Н. Новикова. – Орёл: Орловский государственный университет им. И.С. Тургенева, 2020. – С. 309-315.
11. Вдовичев, А. А. Численное моделирование процессов тепломассообмена сжиженного природного газа в гофрированном криобаке / А. А. Вдовичев // Международный научно-исследовательский журнал. – 2020. – № 6-1(96). – С. 6-12. – DOI 10.23670/IRJ.2020.96.6.001.
12. Данилова Г.Н. и др. Сборник задач по процессам теплообмена в пищевой и холодильной промышленности. – М.: Пищевая промышленность, 1976. – 240 с.
13. Дрючин, Д. А. Оценка влияния технологических параметров и эксплуатационных факторов на эффективность применения компримированного природного газа на автомобильном транспорте / Д. А. Дрючин, А. С. Тищенко // Интеллект. Инновации. Инвестиции. – 2017. – № 11. – С. 16-19.
14. Ерохов, В. И. Эффективность применения сжиженного природного газа в качестве моторного топлива / В. И. Ерохов // Организация и безопасность дорожного движения: Материалы IX всероссийской научно-практической конференции (с международным участием), посвящённой памяти профессора, доктора технических наук Резника Л.Г., Тюмень, 16 марта 2016 года. – Тюмень: Тюменский государственный нефтегазовый университет, 2016. – С. 392-400.
15. Каганер М.Г. Тепломассообмен в низкотемпературных теплоизоляционных конструкциях. – М.: Энергия, 1979. – 256 с.
16. Ким И.П., Калина А.А. Неразъемные соединения и соединения с натягом. Белорусский национальный технический университет. – Минск, 2010. http://rep.bntu.by/bits
17. Лиховидов, Д. В. Применение криогенных технологий для топливных систем, работающих на сжиженном природном газе / Д. В. Лиховидов, Н. С. Калинин, В. А. Свиридов // Наука и военная безопасность. – 2021. – № 3(26). – С. 69-72.
18. Макарова В.И. и др. Закономерности процесса газовыделения из металлов при комнатных температурах. // Вопросы атомной науки и техники. Вып. 4(14), 1980. – С. 72–76.
19. Мешалкин, Д. С. Применение сжиженного природного газа в качестве моторного топлива / Д. С. Мешалкин, М. М. Ларченко, В. С. Яблокова // Научный форум: Инновационная наука: сборник статей по материалам VI международной научно-практической конференции, Москва, 28 августа – 04 2017 года. – Москва: Общество с ограниченной ответственностью "Международный центр науки и образования", 2017. – С. 30-34.
20. Мовчан Е. П. Анализ конструкций криогенных топливных баков для транспортных средств и пути решения проблем внедрения СПГ в качестве моторного топлива // Вестник МАХ. 2004. №1. URL: https://cyberleninka.ru/article/n/analiz-konstruktsiy-kriogennyh-toplivnyh-bakov-dlya-transportnyh-sredstv-i-puti-resheniya-problem-vnedreniya-spg-v-kachestve-motornogo (дата обращения: 23.01.2022).
21. Патент № 2737831 C1 Российская Федерация, МПК F02M 21/02, B60K 15/07, F17C 13/00. Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе: № 2019131083: заявл. 02.10.2019: опубл. 03.12.2020 / В. Г. Быков; заявитель Общество с ограниченной ответственностью "Югорский машиностроительный завод".
22. Патент на полезную модель № 170383 U1 Российская Федерация, МПК F02M 21/02, F17C 13/00, B60K 15/03. Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе: № 2016118509: заявл. 12.05.2016 : опубл. 24.04.2017 / О. М. Попов, С. А. Смирнов, Ю. В. Колгушкин, М. В. Алексеев; заявитель Открытое акционерное общество "Научно-производственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ").
23. Патент СССР 1104104 Вакуумный химический поглотитель водорода и способ получения его носителя.
24. Попова, М. Е. Тепловая изоляция для систем сжиженного природного газа / М. Е. Попова, Е. Н. Грэдинарь // Поколение будущего: взгляд молодых ученых - 2021: сборник научных статей 10-й Международной молодежной научной конференции, Курск, 11–12 ноября 2021 года. – Курск: Юго-Западный государственный университет, 2021. – С. 240-243.
25. Солнцев Ю.П., Степанов Г.А. Материалы в криогенной технике: Справочник. − Л.: Машиностроение, 1982. − 312 с.
26. Справочник по физико-техническим основам криогеники / Под ред. М.П. Малкова. – М.: Энергоатомиздат, 1985. – 432 с.
27. Справочник. Вакуумная техника / Под ред. Е.С. Фролова, В.Е. Минайчева. – М.: Машиностроение, 1992. – 480 с.
28. Шак А. Промышленная теплопередача, 1961. – 524 с.
29. http://www.saranskpribor.ru/product-catalog/ (Электронный ресурс).
1. ГОСТ Р 52857.1–2007 Сосуды и аппараты, Нормы и методы расчета на прочность. Общие требования.
2. ГОСТ Р 52857.2–2007 Сосуды и аппараты, Нормы и методы расчета на прочность. Расчет цилиндрических и конических обечаек, выпуклых и плоских днищ и крышек.
3. ГОСТ 6533–78 Днища эллиптические отбортованные стальные для сосудов, аппаратов и котлов.
4. ГОСТ Р 56218-2014 Автомобильные транспортные средства, работающие на сжиженном природном газе. Криогенные системы питания.
5. ГОСТ 3826-82 Сетка тканная с квадратными ячейками.
6. ГОСТ 12.2.085-2002 Сосуды, работающие под давлением. Клапаны предохранительные. Требования безопасности.
7. ГОСТ 12532-88 Клапаны предохранительные прямого действия.
8. ТУ 6-16-2352-2015 Активированный уголь СКТ-4.
9. Акулов Л.А. и др. Теплофизические свойства и фазовое равновесие криопродуктов. Справ. – СПб.: СПбГУНиПТ, 2009. – 567 с.
10. Буйлова, М. В. Перспективы применения сжиженного природного газа в качестве топлива грузовых автомобилей / М. В. Буйлова, Р. А. Вилаев // Информационные технологии и инновации на транспорте: Материалы 5-ой Международной научно-практической конференции, Орёл, 22–23 мая 2019 года / Под общей редакцией А.Н. Новикова. – Орёл: Орловский государственный университет им. И.С. Тургенева, 2020. – С. 309-315.
11. Вдовичев, А. А. Численное моделирование процессов тепломассообмена сжиженного природного газа в гофрированном криобаке / А. А. Вдовичев // Международный научно-исследовательский журнал. – 2020. – № 6-1(96). – С. 6-12. – DOI 10.23670/IRJ.2020.96.6.001.
12. Данилова Г.Н. и др. Сборник задач по процессам теплообмена в пищевой и холодильной промышленности. – М.: Пищевая промышленность, 1976. – 240 с.
13. Дрючин, Д. А. Оценка влияния технологических параметров и эксплуатационных факторов на эффективность применения компримированного природного газа на автомобильном транспорте / Д. А. Дрючин, А. С. Тищенко // Интеллект. Инновации. Инвестиции. – 2017. – № 11. – С. 16-19.
14. Ерохов, В. И. Эффективность применения сжиженного природного газа в качестве моторного топлива / В. И. Ерохов // Организация и безопасность дорожного движения: Материалы IX всероссийской научно-практической конференции (с международным участием), посвящённой памяти профессора, доктора технических наук Резника Л.Г., Тюмень, 16 марта 2016 года. – Тюмень: Тюменский государственный нефтегазовый университет, 2016. – С. 392-400.
15. Каганер М.Г. Тепломассообмен в низкотемпературных теплоизоляционных конструкциях. – М.: Энергия, 1979. – 256 с.
16. Ким И.П., Калина А.А. Неразъемные соединения и соединения с натягом. Белорусский национальный технический университет. – Минск, 2010. http://rep.bntu.by/bits
17. Лиховидов, Д. В. Применение криогенных технологий для топливных систем, работающих на сжиженном природном газе / Д. В. Лиховидов, Н. С. Калинин, В. А. Свиридов // Наука и военная безопасность. – 2021. – № 3(26). – С. 69-72.
18. Макарова В.И. и др. Закономерности процесса газовыделения из металлов при комнатных температурах. // Вопросы атомной науки и техники. Вып. 4(14), 1980. – С. 72–76.
19. Мешалкин, Д. С. Применение сжиженного природного газа в качестве моторного топлива / Д. С. Мешалкин, М. М. Ларченко, В. С. Яблокова // Научный форум: Инновационная наука: сборник статей по материалам VI международной научно-практической конференции, Москва, 28 августа – 04 2017 года. – Москва: Общество с ограниченной ответственностью "Международный центр науки и образования", 2017. – С. 30-34.
20. Мовчан Е. П. Анализ конструкций криогенных топливных баков для транспортных средств и пути решения проблем внедрения СПГ в качестве моторного топлива // Вестник МАХ. 2004. №1. URL: https://cyberleninka.ru/article/n/analiz-konstruktsiy-kriogennyh-toplivnyh-bakov-dlya-transportnyh-sredstv-i-puti-resheniya-problem-vnedreniya-spg-v-kachestve-motornogo (дата обращения: 23.01.2022).
21. Патент № 2737831 C1 Российская Федерация, МПК F02M 21/02, B60K 15/07, F17C 13/00. Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе: № 2019131083: заявл. 02.10.2019: опубл. 03.12.2020 / В. Г. Быков; заявитель Общество с ограниченной ответственностью "Югорский машиностроительный завод".
22. Патент на полезную модель № 170383 U1 Российская Федерация, МПК F02M 21/02, F17C 13/00, B60K 15/03. Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе: № 2016118509: заявл. 12.05.2016 : опубл. 24.04.2017 / О. М. Попов, С. А. Смирнов, Ю. В. Колгушкин, М. В. Алексеев; заявитель Открытое акционерное общество "Научно-производственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ").
23. Патент СССР 1104104 Вакуумный химический поглотитель водорода и способ получения его носителя.
24. Попова, М. Е. Тепловая изоляция для систем сжиженного природного газа / М. Е. Попова, Е. Н. Грэдинарь // Поколение будущего: взгляд молодых ученых - 2021: сборник научных статей 10-й Международной молодежной научной конференции, Курск, 11–12 ноября 2021 года. – Курск: Юго-Западный государственный университет, 2021. – С. 240-243.
25. Солнцев Ю.П., Степанов Г.А. Материалы в криогенной технике: Справочник. − Л.: Машиностроение, 1982. − 312 с.
26. Справочник по физико-техническим основам криогеники / Под ред. М.П. Малкова. – М.: Энергоатомиздат, 1985. – 432 с.
27. Справочник. Вакуумная техника / Под ред. Е.С. Фролова, В.Е. Минайчева. – М.: Машиностроение, 1992. – 480 с.
28. Шак А. Промышленная теплопередача, 1961. – 524 с.
29. http://www.saranskpribor.ru/product-catalog/ (Электронный ресурс).