АНАЛИЗ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ МЕДИЦИНСКОГО ПРОФИЛЯ
|
ВВЕДЕНИЕ 4
ГЛАВА 1. ОПИСАНИЕ ИСХОДНЫХ ДАННЫХ. МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ 6
1.1 Перспективы использования методов машинного обучения в медицине.... 6
1.2 Извлечения показателей из исходных данных 10
1.3 Анализ библиотек языка python и описание методов машинного обучения 14
ГЛАВА 2. ПРИМЕНЕНИЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ 26
2.1 Первичный анализ и предобработка исходных данных 26
2.2 Применение методов классификации, отбора признаков и заполнения
пропусков 33
ГЛАВА 3. АПРОБИРОВАНИЕ РЕЗУЛЬТАТОВ 37
3.1 Анализ и интерпретация полученных результатов 37
3.2 Практическое обоснование результатов исследования в предметной
области 40
ЗАКЛЮЧЕНИЕ 42
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 43
Приложение 1. Шаблон выписки 46
Приложение 2. Матрица корреляции 48
Приложение 3. Графики поиска оптимальных гиперпараметров (без заполнения припусков) 51
ГЛАВА 1. ОПИСАНИЕ ИСХОДНЫХ ДАННЫХ. МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ 6
1.1 Перспективы использования методов машинного обучения в медицине.... 6
1.2 Извлечения показателей из исходных данных 10
1.3 Анализ библиотек языка python и описание методов машинного обучения 14
ГЛАВА 2. ПРИМЕНЕНИЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ 26
2.1 Первичный анализ и предобработка исходных данных 26
2.2 Применение методов классификации, отбора признаков и заполнения
пропусков 33
ГЛАВА 3. АПРОБИРОВАНИЕ РЕЗУЛЬТАТОВ 37
3.1 Анализ и интерпретация полученных результатов 37
3.2 Практическое обоснование результатов исследования в предметной
области 40
ЗАКЛЮЧЕНИЕ 42
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 43
Приложение 1. Шаблон выписки 46
Приложение 2. Матрица корреляции 48
Приложение 3. Графики поиска оптимальных гиперпараметров (без заполнения припусков) 51
Методы машинного обучения применяются в разнообразных областях и помогают решать множество задач: от обнаружения спама и актов мошенничества до распознавания и генерации изображений и музыкальных композиций. Важным и перспективным приложением методов машинного обучения является медицинская диагностика. В частности, прогнозирование состояния пациента, дифференциальная диагностика заболеваний, проверка эффективности препаратов и т.д. [7, 21]
На сегодняшний день в медицине накапливаются огромные массивы разнородных данных, а с совершенствованием и внедрением новых медицинских технологий, в том числе компьютерных, скорость их накопления постоянно растет. Большую роль играют текстовые и числовые медицинские данные, находящиеся в выписках пациентов. В связи с этим существует потребность в их обработке и анализе, а также применения методов искусственного интеллекта для получения новых знаний [17].
Расчет Федеральной службы государственной статистики по данным Минздрава России показал, что за период 2000-2016 гг. существует тенденция к увеличению количества зарегистрированных больных в возрасте 0-14 лет с заболеваниями мочеполовой системы, установленными впервые в жизни [29]. Это может быть следствием недостаточной эффективности системы профилактики и предотвращения заболеваний [4].
Наиболее распространенными заболеваниями мочеполовой системы у детей являются пиелонефрит, гломерулонефрит и тубулоинтерстициальный нефрит. Их особенностью является сложная диагностика и порой бессимптомная клиническая картина. К примеру, при пиелонефрите обычно преобладают общие симптомы в клинической картине, что приводит к достаточно трудному выявлению данного заболевания [8]. Своевременная диагностика перечисленных заболеваний поможет оперативно подобрать индивидуальное лечение и избежать осложнений в будущем.
Цель работы - анализ методов машинного обучения для повышения точности и сокращения времени диагностики заболеваний мочеполовой системы у детей.
Объект исследования - методы машинного обучения.
Предмет исследования - классификатор заболеваний мочеполовой системы пациентов Алтайской краевой клинической детской больницы.
Актуальность данной работы обуславливается необходимостью повышения точности и сокращения времени диагностики заболеваний мочеполовой системы у детей.
Практическая значимость исследования состоит в подборе и описании таких методов машинного обучения, которые помогут врачам проводить диагностику заболеваний мочеполовой системы у детей.
На сегодняшний день в медицине накапливаются огромные массивы разнородных данных, а с совершенствованием и внедрением новых медицинских технологий, в том числе компьютерных, скорость их накопления постоянно растет. Большую роль играют текстовые и числовые медицинские данные, находящиеся в выписках пациентов. В связи с этим существует потребность в их обработке и анализе, а также применения методов искусственного интеллекта для получения новых знаний [17].
Расчет Федеральной службы государственной статистики по данным Минздрава России показал, что за период 2000-2016 гг. существует тенденция к увеличению количества зарегистрированных больных в возрасте 0-14 лет с заболеваниями мочеполовой системы, установленными впервые в жизни [29]. Это может быть следствием недостаточной эффективности системы профилактики и предотвращения заболеваний [4].
Наиболее распространенными заболеваниями мочеполовой системы у детей являются пиелонефрит, гломерулонефрит и тубулоинтерстициальный нефрит. Их особенностью является сложная диагностика и порой бессимптомная клиническая картина. К примеру, при пиелонефрите обычно преобладают общие симптомы в клинической картине, что приводит к достаточно трудному выявлению данного заболевания [8]. Своевременная диагностика перечисленных заболеваний поможет оперативно подобрать индивидуальное лечение и избежать осложнений в будущем.
Цель работы - анализ методов машинного обучения для повышения точности и сокращения времени диагностики заболеваний мочеполовой системы у детей.
Объект исследования - методы машинного обучения.
Предмет исследования - классификатор заболеваний мочеполовой системы пациентов Алтайской краевой клинической детской больницы.
Актуальность данной работы обуславливается необходимостью повышения точности и сокращения времени диагностики заболеваний мочеполовой системы у детей.
Практическая значимость исследования состоит в подборе и описании таких методов машинного обучения, которые помогут врачам проводить диагностику заболеваний мочеполовой системы у детей.
Исследования в области применения методов машинного обучения к диагностике заболеваний мочеполовой системы у детей являются актуальными на сегодняшний день и проводятся как в нашей стране, так и за рубежом.
В рамках данной работы были решены различные трудности работы с выписками пациентов и была написана программа, извлекающая необходимую информацию из них в полуавтоматическом режиме.
Также были проанализированы различные методы машинного обучения и подходы к повышению их качества применительно к извлеченным данным. В результате градиентный бустинг показал большую по сравнению с остальными методами адекватность и предсказательную способность по всем подходам. Метод рекурсивного отбора признаков в целом значительно не улучшил и не ухудшил качество классификаторов, а метод заполнения пропущенных значений в большинстве случаях сильно ухудшил его.
Результаты работы показали необходимость развития данной проблематики. Дальнейшие исследования в области применения на практике методов машинного обучения к диагностике заболеваний мочеполовой системы у детей могут помочь врачу не только в извлечении информации из массива выписок и его анализе, но и в сокращении времени постановки диагноза и увеличении его точности.
В рамках данной работы были решены различные трудности работы с выписками пациентов и была написана программа, извлекающая необходимую информацию из них в полуавтоматическом режиме.
Также были проанализированы различные методы машинного обучения и подходы к повышению их качества применительно к извлеченным данным. В результате градиентный бустинг показал большую по сравнению с остальными методами адекватность и предсказательную способность по всем подходам. Метод рекурсивного отбора признаков в целом значительно не улучшил и не ухудшил качество классификаторов, а метод заполнения пропущенных значений в большинстве случаях сильно ухудшил его.
Результаты работы показали необходимость развития данной проблематики. Дальнейшие исследования в области применения на практике методов машинного обучения к диагностике заболеваний мочеполовой системы у детей могут помочь врачу не только в извлечении информации из массива выписок и его анализе, но и в сокращении времени постановки диагноза и увеличении его точности.
Подобные работы
- Автоматическое выявление социолингвистических данных на
материале дневников проекта «Прожито»
Дипломные работы, ВКР, лингвистика. Язык работы: Русский. Цена: 4750 р. Год сдачи: 2024 - Интеллектуальная цифровая платформа
персонализированного управления качеством жизни «Health Heuristics»
Диссертация , информатика. Язык работы: Русский. Цена: 9000 р. Год сдачи: 2020 - МЕДИЦИНСКАЯ ИНФОРМАЦИОННАЯ СИСТЕМА ДЛЯ КОНТРОЛЯ И
ПРОГНОЗИРОВАНИЯ ГИПОПИТУИТАРИЗМА У ДЕТЕЙ И
ПОДРОСТКОВ
Дипломные работы, ВКР, информационные системы. Язык работы: Русский. Цена: 4700 р. Год сдачи: 2021 - АЛГОРИТМЫ И ПРОГРАММНЫЙ КОМПЛЕКС
СБОРА И АНАЛИЗА ИЗМЕРИТЕЛЬНОЙ
ИНФОРМАЦИИ ДЛЯ ИССЛЕДОВАНИЙ В ОБЛАСТИ
КЛИНИЧЕСКОЙ БИОМЕХАНИКИ
Магистерская диссертация, информационные системы. Язык работы: Русский. Цена: 5500 р. Год сдачи: 2016 - Построение рациона питания с учетом индивидуальных физиологических особенностей на основе методов машинного обучения
Бакалаврская работа, информатика. Язык работы: Русский. Цена: 4200 р. Год сдачи: 2020 - НЕЙРОСЕТЕВЫЕ МЕТОДЫ ОЦЕНКИ ИНФОРМАТИВНОСТИ
АНТРОПОМЕТРИЧЕСКИХ ПРИЗНАКОВ ПРИ ОПРЕДЕЛЕНИИ
ЛИЧНОСТНЫХ И ПОВЕДЕНЧЕСКИХ КАЧЕСТВ ЧЕЛОВЕКА
Магистерская диссертация, математика и информатика. Язык работы: Русский. Цена: 5430 р. Год сдачи: 2019 - АНАЛИЗ ИНФОРМАТИВНОСТИ ПРИЗНАКОВ БИОМАРКЕРНЫХ ИММУНОСИГНАТУРНЫХ ДАННЫХ В ЗАДАЧЕ РАННЕЙ МЕДИЦИНСКОЙ ДИАГНОСТИКИ
Магистерская диссертация, информатика. Язык работы: Русский. Цена: 4900 р. Год сдачи: 2018 - СТРАТЕГИЯ РАЗВИТИЯ ЧАСТНОЙ МЕДИЦИНСКОЙ ОРГАНИЗАЦИИ
Магистерская диссертация, менеджмент. Язык работы: Русский. Цена: 4835 р. Год сдачи: 2022 - Теория и практика формирования иноязычной профессиональной коммуникативной компетентности специалиста
Диссертация , педагогика. Язык работы: Русский. Цена: 500 р. Год сдачи: 2000





