Моделирование и оптимизация процесса облагораживания бензинов на цеолитных катализаторах
|
Введение 16
1 Литературный обзор 21
1. 1 Аналитический обзор схем превращения и кинетических параметров реакций УВ на ЦСК 21
1. 2 Технология процесса цеоформинга 27
1. 3 Конструктивные особенности реакторов для облагораживания УВ 32
2. Объект и методы исследования 38
3 Расчетная часть 40
3. 1 Расчет термодинамических параметров реакций 40
3. 2 Формирование схемы превращений 42
3. 3 Подбор кинетических параметров 42
3. 4 Предварительный расчет реактора облагораживания УВ на ЦСК 50
3. 4. 1 Материальный баланс 50
3. 4. 2 Тепловой баланс 53
3. 4. 3 Определение геометрических размеров реактора 57
3. 4. 4 Конструктивное оформление реактора 58
3. 5 Проверка модели на адекватность 63
4 Моделирование и оптимизация 66
4. 1 Реакторный блок 66
4. 2 Узел фракционирования 68
5. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение 72
5. 1 Предпроектный анализ 72
5. 1. 1 Потенциальные потребители результатов исследования 72
5. 1. 2 Анализ конкурентных технических решений с позиции ресурсоэффективности и ресурсосбережения 73
5. 1. 3 SWOT - анализ 74
5. 1. 4 Оценка готовности проекта к коммерциализации 78
5. 1. 5 Методы коммерциализации результатов научно - технического исследования 79
5. 2 Инициация проекта 80
13
5. 3. Планирование и формирование бюджета научного исследования 82
5. 3. 1 Контрольные события проекта 82
5. 3. 2 План проекта 82
5. 3. 3 Бюджет научного исследования (НИ) 85
5. 3. 3. 1 Расчет материальных затрат НИ 85
5. 3. 3. 2 Расчет затрат на специальное оборудование для научных работ 85
5. 3. 3. 3 Основная заработная плата 86
5. 3. 3. 4 Дополнительная заработная плата научно - производственного персонала 88
5. 3. 3. 5 Отчисления на социальные нужды 89
5. 3. 3. 6 Накладные расходы 89
5. 3. 4 Организационная структура проекта 91
5. 3. 5 Матрица ответственности 91
5. 3. 6 План управления коммуникациями проекта 92
5. 4 Определение ресурсной (ресурсосберегающей), финансовой, бюджетной,
социальной и экономической эффективности разработки модели реактора цеоформинга 93
6. Социальная ответственность 96
6. 1 Анализ выявленных вредных факторов производственной
проектируемой среды 97
6. 1. 1 Характеристика используемых веществ 97
6. 1. 2 Микроклимат 99
6. 1. 3 Освещенность 100
6. 1. 4 Производственный шум 101
6. 1. 5 Производственная вибрация 101
6. 2 Анализ опасных факторов производственной среды 102
6. 2. 1 Механические опасности 102
6. 2. 2 Электробезопасность 103
6. 2. 3 Термические опасности 104
6. 2. 4 Пожаровзрывобезопасность 105
6. 3 Охрана окружающей среды 106
14
6. 4 Защита в чрезвычайных ситуациях (ЧС) 108
6. 5 Правовые и организационные вопросы обеспечения безопасности 109
Заключение 110
Список публикаций студента 111
Список литературы 113
Приложение А. Literature review 120
Приложение Б. Расчет термодинамических параметров реакций 139
Приложение В. Расчеты на математической модели 164
Приложение Г. Основные параметры работы аппаратов узла фракционирования
1 Литературный обзор 21
1. 1 Аналитический обзор схем превращения и кинетических параметров реакций УВ на ЦСК 21
1. 2 Технология процесса цеоформинга 27
1. 3 Конструктивные особенности реакторов для облагораживания УВ 32
2. Объект и методы исследования 38
3 Расчетная часть 40
3. 1 Расчет термодинамических параметров реакций 40
3. 2 Формирование схемы превращений 42
3. 3 Подбор кинетических параметров 42
3. 4 Предварительный расчет реактора облагораживания УВ на ЦСК 50
3. 4. 1 Материальный баланс 50
3. 4. 2 Тепловой баланс 53
3. 4. 3 Определение геометрических размеров реактора 57
3. 4. 4 Конструктивное оформление реактора 58
3. 5 Проверка модели на адекватность 63
4 Моделирование и оптимизация 66
4. 1 Реакторный блок 66
4. 2 Узел фракционирования 68
5. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение 72
5. 1 Предпроектный анализ 72
5. 1. 1 Потенциальные потребители результатов исследования 72
5. 1. 2 Анализ конкурентных технических решений с позиции ресурсоэффективности и ресурсосбережения 73
5. 1. 3 SWOT - анализ 74
5. 1. 4 Оценка готовности проекта к коммерциализации 78
5. 1. 5 Методы коммерциализации результатов научно - технического исследования 79
5. 2 Инициация проекта 80
13
5. 3. Планирование и формирование бюджета научного исследования 82
5. 3. 1 Контрольные события проекта 82
5. 3. 2 План проекта 82
5. 3. 3 Бюджет научного исследования (НИ) 85
5. 3. 3. 1 Расчет материальных затрат НИ 85
5. 3. 3. 2 Расчет затрат на специальное оборудование для научных работ 85
5. 3. 3. 3 Основная заработная плата 86
5. 3. 3. 4 Дополнительная заработная плата научно - производственного персонала 88
5. 3. 3. 5 Отчисления на социальные нужды 89
5. 3. 3. 6 Накладные расходы 89
5. 3. 4 Организационная структура проекта 91
5. 3. 5 Матрица ответственности 91
5. 3. 6 План управления коммуникациями проекта 92
5. 4 Определение ресурсной (ресурсосберегающей), финансовой, бюджетной,
социальной и экономической эффективности разработки модели реактора цеоформинга 93
6. Социальная ответственность 96
6. 1 Анализ выявленных вредных факторов производственной
проектируемой среды 97
6. 1. 1 Характеристика используемых веществ 97
6. 1. 2 Микроклимат 99
6. 1. 3 Освещенность 100
6. 1. 4 Производственный шум 101
6. 1. 5 Производственная вибрация 101
6. 2 Анализ опасных факторов производственной среды 102
6. 2. 1 Механические опасности 102
6. 2. 2 Электробезопасность 103
6. 2. 3 Термические опасности 104
6. 2. 4 Пожаровзрывобезопасность 105
6. 3 Охрана окружающей среды 106
14
6. 4 Защита в чрезвычайных ситуациях (ЧС) 108
6. 5 Правовые и организационные вопросы обеспечения безопасности 109
Заключение 110
Список публикаций студента 111
Список литературы 113
Приложение А. Literature review 120
Приложение Б. Расчет термодинамических параметров реакций 139
Приложение В. Расчеты на математической модели 164
Приложение Г. Основные параметры работы аппаратов узла фракционирования
Реферат
Выпускная квалификационная работа 110с., 41 рис., 36 табл., 60 источников, 4 прил.
Ключевые слова: цеоформинг, прямогонный бензин, цеолитсодержащий катализатор, схема превращения углеводородов, кинетические параметры реакций, оптимизация, модель реактора, модель узла фракционирования, программное обеспечение HYSYS Aspen Tech.
Объектом исследования является процесс облагораживания бензиновых фракций в схеме процесса цеоформинг, т.е. реактора и узла фракционирования.
Цель работы - моделирование и оптимизация реакторного блока и узла фракционирования для процесса облагораживания углеводородов на цеолитсодержащих катализаторах, расчет оптимальных конструктивных размеров реактора. В процессе исследования использовалась: моделирующая система HYSYS Aspen Tech для моделирования и оптимизации процесса.
В результате исследования была сформирована целевая функция в безразмерной форме, на основании чего предложена конструкция реактора и выбран оптимальный температурный режим при работе на максимальный выход или на максимальное октановое число продукта. Также получены оптимальные параметры работы ректификационной колонны, позволяющие получить бензины с характеристиками, соответствующими требованиям ГОСТ 51866 - 2002.
Область применения: результаты данной работы могут быть использованы для проектирования новых и оптимизации действующих установок облагораживания углеводородов на цеолитах, т.к. получение продуктов с высокой стоимостью и с меньшими капитальными и эксплуатационными затратами является одной из важных задач каждой конкурентно способной компании.
Следующий этап работы процесса - проведение эксперимента для уточнения кинетических параметров реакций и схемы превращения.
Введение
Актуальность применения цеолитсодержащих катализаторов для облагораживания бензинов
Процессы конверсии углеводородов (УВ), такие как каталитический крекинг УВ, изомеризация олефинов, алкилирование ароматических соединений и т.п., играют важную роль в нефтехимической промышленности. Из - за постоянно растущей конкуренции в этих областях промышленности, требования к качеству продуктов повышаются, и существует потребность в более экологически чистых процессах. Это является стимулом к более детальному пониманию и, как следствие, улучшению процессов [1].
Поскольку традиционно используемые гомогенные катализаторы являются чрезвычайно едкими и вредными для окружающей среды, все увеличивается спрос на экологически чистые гетерогенные катализаторы. Эффективность нефтепереработки в значительной степени основана на применении цеолитов в качестве катализаторов. Использование цеолитов в качестве катализаторов в нефтепереработке и нефтехимии было признано одним из главных достижений ХХ века.
Применение цеолитсодержащих катализаторов (ЦСК) может повысить выход требуемых продуктов и, таким образом, значительно снизить затраты на их производство. Кроме того, цеолиты имеют преимущества, по сравнению с ранее используемыми катализаторами на основе оксида алюминия, а именно наличие большей термической и механической стабильности, а также более высокой селективности.
ЦСК являются источником значительного улучшения выхода бензина и повышения октанового числа (ОЧ), а также производства более чистых топлив и смазочных материалов с улучшенными эксплуатационными свойствами [2]. Также этот катализатор характеризуется повышенной стабильностью каталитического действия, которая позволяет проводить процесс с использованием технологии с неподвижным слоем [3].
16
Следующие преимущества делают процессы переработки на цеолитах эффективными и привлекательными для реализации:
• Низкие эксплуатационные расходы и капитальные вложения;
• Простота технологии;
• Меньшая взрыво - и пожароопасность из - за отсутствия водорода;
• Низкая чувствительность катализатора к качеству сырья.
Таким образом, все вышеупомянутые преимущества ЦСК, позволяют разрабатывать новые высокоэффективные процессы, вытесняя тем самым дорогие платиносодержащие катализаторы и технологии с применением водорода.
Процесс цеоформинга - промышленно освоенная технология производства высокооктановых бензинов на цеолитных катализаторах, разработана научно - инженерным центром “Цеосит” Объединенного института катализа им. Г. К. Борескова.
Впервые реализация процесса с применением безводородной технологии была проведена в 1982 - 1990 годах с использованием пилотного оборудования. Процесс был внедрен в промышленность, как в России, так и за рубежом.
В августе 1992 года, первым опытным заводом, который применил технологию процесса Цеоформинг, был газоперерабатывающий завод в Нижневартовске с производственной мощностью 5 тыс. тонн сырья в год. ОЧ для бензиновой фракции было достигнуто на уровне 80 - 82 (ММ), а выход составил 82 - 85%. Период межрегенерационного пробега катализатора варьировался в пределах 220 - 300 ч.
В феврале 1997 года за рубежом другой нефтеперерабатывающий завод, а именно Глимар в Польше, начал производить неэтилированный бензин типа Евросупер - 95 с ОЧ 85 (ММ) или 95 (ИМ), используя в качестве сырья прямогонный бензин. Производственная мощность этого завода составляла 40 тыс. тонн сырья в год. Выход целевых продуктов: бензина Евросупер - 95 на
17
уровне 62 - 70%, а сжиженного природного газа 22 - 30%. Период межрегенерационного пробега катализатора в пределах 250 - 350 ч.
Из представленных данных развития и применения процесса Цеоформинга на малотоннажных установках в мировой практике следует, что для этого процесса характерно повышенное газообразование и, соответственно, низкий выход бензиновой фракции, что и послужило причиной ограниченного применения данной технологии. Кроме того, процесс считается неэффективным для крупнотоннажного производства из-за необходимости частых остановок для регенерации/замены катализатора.
Таким образом, сегодня, благодаря развитию науки и техники, предоставляется возможность для совершенствования процесса Цеоформинга путем вовлечения в производство автомобильных бензинов нестандартного углеводородного сырья, например, газового конденсата, конденсатов попутного газа и тп., изменения технологических режимов процесса, а также модернизации или оптимизации аппаратурного оборудования на математической модели с целью повышения выхода и качества бензиновой фракции.
Цель работы
Основной целью магистерской диссертации являлось моделирование и оптимизация реакторного блока и узла фракционирования для процесса облагораживания УВ на ЦСК, расчет оптимальных конструктивных размеров реактора. Математическая модель помогает сократить количество стадий масштабного перехода, выбрать оптимальные режимы эксплуатации для производства автомобильного бензина, соответствующего требованиям ГОСТ 51866 - 2002, за одну стадию и без компаундирования сырья.
Таким образом, объектом исследования являлся процесс облагораживания бензиновых фракций, а предметами исследования были стадии высокотемпературной конверсии УВ на ЦСК и выделения бензина, соответствующего по своим качественным характеристикам государственному стандарту.
Выпускная квалификационная работа 110с., 41 рис., 36 табл., 60 источников, 4 прил.
Ключевые слова: цеоформинг, прямогонный бензин, цеолитсодержащий катализатор, схема превращения углеводородов, кинетические параметры реакций, оптимизация, модель реактора, модель узла фракционирования, программное обеспечение HYSYS Aspen Tech.
Объектом исследования является процесс облагораживания бензиновых фракций в схеме процесса цеоформинг, т.е. реактора и узла фракционирования.
Цель работы - моделирование и оптимизация реакторного блока и узла фракционирования для процесса облагораживания углеводородов на цеолитсодержащих катализаторах, расчет оптимальных конструктивных размеров реактора. В процессе исследования использовалась: моделирующая система HYSYS Aspen Tech для моделирования и оптимизации процесса.
В результате исследования была сформирована целевая функция в безразмерной форме, на основании чего предложена конструкция реактора и выбран оптимальный температурный режим при работе на максимальный выход или на максимальное октановое число продукта. Также получены оптимальные параметры работы ректификационной колонны, позволяющие получить бензины с характеристиками, соответствующими требованиям ГОСТ 51866 - 2002.
Область применения: результаты данной работы могут быть использованы для проектирования новых и оптимизации действующих установок облагораживания углеводородов на цеолитах, т.к. получение продуктов с высокой стоимостью и с меньшими капитальными и эксплуатационными затратами является одной из важных задач каждой конкурентно способной компании.
Следующий этап работы процесса - проведение эксперимента для уточнения кинетических параметров реакций и схемы превращения.
Введение
Актуальность применения цеолитсодержащих катализаторов для облагораживания бензинов
Процессы конверсии углеводородов (УВ), такие как каталитический крекинг УВ, изомеризация олефинов, алкилирование ароматических соединений и т.п., играют важную роль в нефтехимической промышленности. Из - за постоянно растущей конкуренции в этих областях промышленности, требования к качеству продуктов повышаются, и существует потребность в более экологически чистых процессах. Это является стимулом к более детальному пониманию и, как следствие, улучшению процессов [1].
Поскольку традиционно используемые гомогенные катализаторы являются чрезвычайно едкими и вредными для окружающей среды, все увеличивается спрос на экологически чистые гетерогенные катализаторы. Эффективность нефтепереработки в значительной степени основана на применении цеолитов в качестве катализаторов. Использование цеолитов в качестве катализаторов в нефтепереработке и нефтехимии было признано одним из главных достижений ХХ века.
Применение цеолитсодержащих катализаторов (ЦСК) может повысить выход требуемых продуктов и, таким образом, значительно снизить затраты на их производство. Кроме того, цеолиты имеют преимущества, по сравнению с ранее используемыми катализаторами на основе оксида алюминия, а именно наличие большей термической и механической стабильности, а также более высокой селективности.
ЦСК являются источником значительного улучшения выхода бензина и повышения октанового числа (ОЧ), а также производства более чистых топлив и смазочных материалов с улучшенными эксплуатационными свойствами [2]. Также этот катализатор характеризуется повышенной стабильностью каталитического действия, которая позволяет проводить процесс с использованием технологии с неподвижным слоем [3].
16
Следующие преимущества делают процессы переработки на цеолитах эффективными и привлекательными для реализации:
• Низкие эксплуатационные расходы и капитальные вложения;
• Простота технологии;
• Меньшая взрыво - и пожароопасность из - за отсутствия водорода;
• Низкая чувствительность катализатора к качеству сырья.
Таким образом, все вышеупомянутые преимущества ЦСК, позволяют разрабатывать новые высокоэффективные процессы, вытесняя тем самым дорогие платиносодержащие катализаторы и технологии с применением водорода.
Процесс цеоформинга - промышленно освоенная технология производства высокооктановых бензинов на цеолитных катализаторах, разработана научно - инженерным центром “Цеосит” Объединенного института катализа им. Г. К. Борескова.
Впервые реализация процесса с применением безводородной технологии была проведена в 1982 - 1990 годах с использованием пилотного оборудования. Процесс был внедрен в промышленность, как в России, так и за рубежом.
В августе 1992 года, первым опытным заводом, который применил технологию процесса Цеоформинг, был газоперерабатывающий завод в Нижневартовске с производственной мощностью 5 тыс. тонн сырья в год. ОЧ для бензиновой фракции было достигнуто на уровне 80 - 82 (ММ), а выход составил 82 - 85%. Период межрегенерационного пробега катализатора варьировался в пределах 220 - 300 ч.
В феврале 1997 года за рубежом другой нефтеперерабатывающий завод, а именно Глимар в Польше, начал производить неэтилированный бензин типа Евросупер - 95 с ОЧ 85 (ММ) или 95 (ИМ), используя в качестве сырья прямогонный бензин. Производственная мощность этого завода составляла 40 тыс. тонн сырья в год. Выход целевых продуктов: бензина Евросупер - 95 на
17
уровне 62 - 70%, а сжиженного природного газа 22 - 30%. Период межрегенерационного пробега катализатора в пределах 250 - 350 ч.
Из представленных данных развития и применения процесса Цеоформинга на малотоннажных установках в мировой практике следует, что для этого процесса характерно повышенное газообразование и, соответственно, низкий выход бензиновой фракции, что и послужило причиной ограниченного применения данной технологии. Кроме того, процесс считается неэффективным для крупнотоннажного производства из-за необходимости частых остановок для регенерации/замены катализатора.
Таким образом, сегодня, благодаря развитию науки и техники, предоставляется возможность для совершенствования процесса Цеоформинга путем вовлечения в производство автомобильных бензинов нестандартного углеводородного сырья, например, газового конденсата, конденсатов попутного газа и тп., изменения технологических режимов процесса, а также модернизации или оптимизации аппаратурного оборудования на математической модели с целью повышения выхода и качества бензиновой фракции.
Цель работы
Основной целью магистерской диссертации являлось моделирование и оптимизация реакторного блока и узла фракционирования для процесса облагораживания УВ на ЦСК, расчет оптимальных конструктивных размеров реактора. Математическая модель помогает сократить количество стадий масштабного перехода, выбрать оптимальные режимы эксплуатации для производства автомобильного бензина, соответствующего требованиям ГОСТ 51866 - 2002, за одну стадию и без компаундирования сырья.
Таким образом, объектом исследования являлся процесс облагораживания бензиновых фракций, а предметами исследования были стадии высокотемпературной конверсии УВ на ЦСК и выделения бензина, соответствующего по своим качественным характеристикам государственному стандарту.
Все более ужесточающиеся требования к качеству товарного бензина, вызывают необходимость оптимизировать различные процессы нефтепереработки. Для малотоннажных производств высокооктановых бензинов и их компонентов перспективна безводородная технология облагораживания бензиновых фракций на цеолитсодержащих катализаторах, благодаря одностадийности процесса и низкой чувствительности катализатора к сере.
Следует отметить, что в рамках проведенного НИ, удалось достичь поставленной цели, а именно - рассчитать и оптимизировать процесс получения высокооктановых бензинов с применением программного продукта HYSYS Aspen Tech.
На основании термодинамических закономерностей представилась возможность оценить направление протекания реакций предложенной схемы превращения УВ на ЦСК и сделать вывод о том, что в условиях цеоформинга возможно большое количество реакций, но для получения определенного состава бензина, необходимо подобрать кинетические параметры процесса таким образом, чтобы интенсифицировать целевые и подавить побочные реакции.
Разработаны математические модели реакторного блока и блока выделения товарных продуктов, проведена их оптимизация в среде HYSYS Aspen Tech. Предложена целевая функция, позволяющая определить оптимальные условия при работе на максимальный выход или максимальное ОЧ продукта. Более того, найдены оптимальные режимы работы реактора и блока фракционирования для различных температур конверсии.
Также в работе была рассмотрена экономическая эффективность исследования с позиции финансовой и ресурсной эффективности и меры обеспечения безопасности при использовании разработанной модели на производстве.
110
Следует отметить, что в рамках проведенного НИ, удалось достичь поставленной цели, а именно - рассчитать и оптимизировать процесс получения высокооктановых бензинов с применением программного продукта HYSYS Aspen Tech.
На основании термодинамических закономерностей представилась возможность оценить направление протекания реакций предложенной схемы превращения УВ на ЦСК и сделать вывод о том, что в условиях цеоформинга возможно большое количество реакций, но для получения определенного состава бензина, необходимо подобрать кинетические параметры процесса таким образом, чтобы интенсифицировать целевые и подавить побочные реакции.
Разработаны математические модели реакторного блока и блока выделения товарных продуктов, проведена их оптимизация в среде HYSYS Aspen Tech. Предложена целевая функция, позволяющая определить оптимальные условия при работе на максимальный выход или максимальное ОЧ продукта. Более того, найдены оптимальные режимы работы реактора и блока фракционирования для различных температур конверсии.
Также в работе была рассмотрена экономическая эффективность исследования с позиции финансовой и ресурсной эффективности и меры обеспечения безопасности при использовании разработанной модели на производстве.
110
Подобные работы
- Моделирование и оптимизация процесса облагораживания бензинов на цеолитных катализаторах
Магистерская диссертация, химия. Язык работы: Русский. Цена: 5200 р. Год сдачи: 2016



