ВВЕДЕНИЕ 3
1 Анализ предметной области автоматизация системы управления транспортным
средством 5
1.1 Обзор и анализ тормозных систем 6
1.2 Анализ существующих систем управления экстренным торможением 10
1.3 Анализ методов искусственного интеллекта и подходов к построению
системы управления 13
1.4 Выводы к первой главе, постановка цели и задач диссертации 20
2 Разработка структурной схемы автоматизированной системы управления
экстренным торможением 21
2.1 Разработка схемы взаимодействия блоков автоматизированной системы
управления экстренным торможением 21
2.2 Разработка блоков структурной схемы автоматизированной системы
управления экстренным торможением 22
2.3 Требования к системе управления 26
2.4 Выводы к второй главе 28
3 Разработка автоматизированной системы управления экстренным
торможением на основе нечеткой логики 29
4 Математическое моделирование тормозной системы в средах AMESim и
Simulink 39
4.1 Математическое моделирование тормозной системы в среде AMESim
39
4.2 Математическое моделирование тормозной системы в среде Simulink69
4.3 Выводы к четвертой главе 84
5 Исследование и анализ моделей тормозной системы 85
Основные результаты и выводы 86
ЗАКЛЮЧЕНИЕ 106
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 107
ПРИЛОЖЕНИЕ А
Автономные транспортные средства активно разрабатываются во всем мире. Созданием технологий беспилотных автомобилей занимаются и автопроизводители (Volvo, Volkswagen, Mercedes-Benz, General Motors), и крупные инженерные центры (Google, Continental, Delphi, Bosch), и военные ведомства (DARPA), и университеты (Stanford University, Carnegie Mellon University, Technical University of Munich, University of Karlsruhe, Fraunhofer Institute, University of Minnesota), многие другие [3]. Задача решается по двум направлениям:
1) комплексная автоматизация автомобиля;
2) автоматизация отдельных режимов движения транспортного
средства (парковка, движение в пробках и т.д.).
В мировом автомобилестроении уделяется особое внимание разработкам систем и устройств для повышения его эффективности, удобности, в том числе безопасности. Среди решаемых задач по безопасности на дорогах общего пользования можно выделить две основные: пассивные и активные системы. Задача пассивной системы - своевременное оповещение водителя о возникновении опасных ситуаций. Активная система помощи при этом может вмешиваться в управление транспортным средством. Основным предназначением систем активной безопасности автомобиля является предотвращение аварийной ситуации. При возникновении такой ситуации система самостоятельно (без участия водителя) оценивает вероятную опасность и при необходимости предотвращает ее путем активного вмешательства в процесс управления автомобилем. Исследование свойств активной безопасности, в том числе тормозных свойств, является актуальной задачей на этапах проектирования, доводки и сертификации транспортных средств. С широким применением ABS и ESP перед автопроизводителями открылись новые возможности улучшения свойств активной безопасности путем внедрения систем помощи водителю (Advanced Driver Assistance Systems - ADAS). Одним из систем помощи водителю может быть отнесена система управления экстренным торможением (Advanced Emergency Braking System - AEBS). Рассматриваемая система априори входит в состав систем управления движением автомобилей с уровнями автоматизации SAE (Society of Automotive Engineers) с второго по пятый.
Целью диссертационной работы является повышение безопасности управления движением за счет разработки автоматизированной системы управления экстренным торможением.
Для достижения этой цели необходимо решить следующие задачи:
- провести обзор и анализ работ в области автоматизации торможения транспортного средства;
- провести обзор и анализ в области элементов искусственного интеллекта;
- разработать структурную схему системы управления экстренным торможением;
- разработать систему управления на основе нечеткой логики;
- разработать математическую модель тормозной системы в среде AMESim и Simulink;
- исследовать модели тормозной системы на основе нечеткой логики.
Целью диссертационной работы являлось повышение безопасности дорожного движения за счет разработки автоматизированной системы управления. Для достижения поставленной цели были решены следующие задачи:
1) обзор и анализ работ в области автоматизации торможения транспортного средства;
2) обзор и анализ в области элементов искусственного интеллекта;
3) разработка структурной схемы системы управления;
4) разработка системы управления на основе нечеткой логики;
5) разработка математической модели тормозной системы;
6) исследование моделей тормозной системы на основе нечеткой логики.
В процессе выполнения диссертационной работы была разработана модель нечеткого вывода. Также была составлена нечеткая база правил, на основе которой нечеткий вывод при входных данных относительной скорости и дистанции до объекта на выходе выдавал замедление транспортного средства.
По результатам анализа моделей тормозной системы на основе нечеткой логики, разработанных в программных продуктах LMS Imagine.Lab AMESim и Simulink/Matlab, было установлено, что более эффективной моделью тормозной системы при начальных скоростях 60 и 80 км/ч оказалась модель, разработанная на основе нечеткой логики в режиме ко-симуляции программ Simulink и LMS Imagine.Lab AMESim
В заключении можно сказать, что повышение безопасности дорожного движения является важной задачей, поскольку причиной большинства дорожно-транспортных происшествий является человеческий фактор, т.е. отвлечение, невнимательность водителя и т.д. Решение данной проблемы можно решить двумя способами - полной автоматизацией либо частичной автоматизацией помощи водителю, т.е. с помощью ADAS систем.