Тип работы:
Предмет:
Язык работы:


Модель динамической прибыли предприятия по Г.П. Потапову

Работа №77870

Тип работы

Магистерская диссертация

Предмет

информационные системы

Объем работы27
Год сдачи2016
Стоимость4950 руб.
ПУБЛИКУЕТСЯ ВПЕРВЫЕ
Просмотрено
24
Не подходит работа?

Узнай цену на написание


Введение 1
Предисловие 2
Задача Г.П. Потапова 3
Экономический смысл задачи 3
Математический смысл задачи 4
Вывод системы уравнений модели 7
Построение модели 7
Формулы для решения 7
Вывод уравнений модели 8
Анализ вывода системы дифференциальных уравнений 12
Решение задачи Коши 16
Задача Коши с начальными данными из [1] 16
Дополнительные предположения 16
Начальные условия 17
Метод Рунге-Кутты 18
Листинг программы 20
Графики 21
Заключение 23
Список литературы

В магистерской диссертации рассматривается модель динамической прибыли предприятия по Г.П. Потапову, связывающая основные экономические показатели предприятия в систему дифференциальных уравнений, контролирующих изменения показателей во времени. Проведен анализ ряда положений работы [1], выполненной авторским коллективом под руководством профессора Г.П. Потапова, и реализован намеченный в ней алгоритм; при анализе учитывались результаты работы [2].
Рассматриваемая система дифференциальных уравнений получается рядом преобразований из символьных интерпретаций соотношений между набором экономических показателей, характеризующих деятельность фирмы. Анализ получения указанной системы составляет содержание первой из двух задач, рассматриваемых в настоящей работе.
Второй задачей является реконструкция решения получающейся системы, точнее говоря, задачи Коши. Решение осуществляется методом Рунге- Кутты, соответствующая программа реализована в среде MATLAB.
Наиболее интересной частью работы стала проверка графиков зависимостей друг от друга различных экономических показателей, составляющих основу модели. При чтении работ Г.П. Потапова возникает предположение о том, что в них построена модель, приводящая к закономерностям, подтвержденным в некоторой реальной ситуации, связанной с производством стирола. Поскольку получить подобное подтверждение естественно на графиках, представляется, что модель, способная осуществить переход от начальных данных к таким построениям, может быть полезной и в других случаях.
Данные соображения лежат в основе актуальности темы работы и позволяют надеяться на то, что многообещающие выводы, сделанные в работах профессора Г.П. Потапова и его соавторов, будут со временем подтверждены реальными данными.


Возникли сложности?

Нужна помощь преподавателя?

Помощь в написании работ!


Опираясь на статьи [1], [2], были реконструированы представленные в них построение модели экономической деятельности предприятия, формирование системы дифференциальных уравнений и набора начальных данных, а также алгоритм решения указанной системы. В качестве основной использовалась работа [1].
Приведем выводы, оформившиеся в процессе работы.
1) Основным результатом настоящей диссертации является проверка всех поддающихся ей заключений статьи [1]. Основной вывод: представленные в статье [1] конструкции - выводы и алгоритмы - являются работоспособными и могут быть использованы для получения результатов для сравнения с реальными закономерностями.
В частности, в настоящей работе
2) проанализировано формирование модельной системы дифференциальных уравнений 1-го порядка; параметры модели разделены на три группы по источнику формирования соответствующих уравнений: уравнения первой группы выражают определения параметров, уравнения второй группы полу-чаются на основе ограничений, уравнения третьей группы имеют смешанное происхождение;
3) выписано недостающее уравнение, отвечающее дифференцированию параметра х7 (себестоимость); этого уравнения нет в [1], таким образом, модельная задача Коши формально дополняется уравнением и соответствующим начальным условием.
Следует отметить также, что контекст работы [1] устроен так, что дифференциальные уравнения системы выглядят не как следствия, а как разъяснения для определений параметров. Таким образом, отправной точкой исследования, предпринятого в [1], является не экономика, а математика.
В настоящей работе дана отсутствующая в статье [1] четкая итоговая формулировка задачи Коши, т.е. набора дифференциальных уравнений и начальных условий плюс набора дополнительных предположений, упрощающих зависимости между хх и х2 и между х4 и х5.
4) В работе сформулирован алгоритм и построена программа решения указанной задачи Коши методом Рунге-Кутты.
5) В качестве реализации построенной программы получен набор графических зависимостей параметров друг от друга.
Итоговый вывод. Сравнение получившихся графиков с приведенными в [1] демонстрирует очевидное качественное совпадение.
Данное обстоятельство позволяет говорить о том, что результаты работы [1] верифицированы и открывают возможности для дальнейшего исследования.
В процессе работы наметились следующие моменты, часть из которых можно считать выводами, а часть - указаниями для дальнейшей работы.
а) Центр тяжести работ [1], [2] приходится на вывод системы дифференциальных уравнений и представление их в форме, приспособленной к решению методом Рунге-Кутты. Пока остается неясным, является ли такое представление счастливым совпадением или искусно заложено в исходные дан¬ные системы.
6) Исходные данные, формализуемые затем в математические закономерности, в работах [1], [2] практически не анализируются. Таким образом, чтобы понять, какая экономика стоит за моделью Г.П. Потапова, почему у модели именно такая структура и именно такие параметры, следует обратиться к поиску дополнительных источников.
в) Сравнение с реальными закономерностями затруднено из-за очевидных проблем, связанных с трудной доступностью последних. Тем не менее, следует отметить, что работы [1] и [2] проникнуты оптимизмом на этот счет. Кроме того, их авторам, по-видимому, были известны некоторые из указанных закономерностей, касающиеся производства стирола, и результаты их сравнения с модельными оказались очень близкими.
Указанный источник оптимизма также можно считать фактором привлекательности модели, свидетельством ее позитивной апробации.
В заключение следует сказать, что отмеченные выше моменты указывают на то, что при исследовании модели Г.П. Потапова следует использовать элементы историко-математического подхода. Это означает, что модель естественно оценивалась не только с позиций ее формальной правильности в математическом или экономическом плане. Модель Г.П. Потапова оказалась привлекательной как состоявшийся культурный феномен, который ждет своего исследования после «разведки боем», предпринятой в настоящей работе.



1. Потапов Г.П. Динамический прогноз прибыли предприятия //Вестник КГТУ им. А.Н. Туполева, 2004, №3. - С. 74-79.
2. Потапов Г.П., Галеева Е.И. Синергетические аспекты затратного ме-неджмента // Вестник КГТУ им. А.Н. Туполева, 2005, № 3. - С. 76-80.
3. Давнис В.В., Тинякова В.И. Адаптивные модели: анализ и прогноз в экономических системах. Воронеж: Воронежский государственный университет, 2006. - 380 с. ISBN 5-9273-1078-8
4. Шарп У., Александер Г., Бэйли Дж. Инвестиции: Пер. с англ. - М.: ИНФРА-М, 1997. - XII, 1024 с. - ISBN 5-86225-455-2.
5. Даутов Р.З. Практикум по методам решения задачи Коши для систем ОДУ. Учебно-методическое пособие. - Казань: КГУ, 2010. - 89 с.


Работу высылаем на протяжении 30 минут после оплаты.



Подобные работы


©2025 Cервис помощи студентам в выполнении работ