Введение 6
Глава 1. Математическое описание цепи последовательно синхронизируемых генераторов в условиях комбинированных случайных воздействий 16
1.1. Постановка задачи 16
1.2. Математические модели случайных воздействий 18
1.3. Математическая модель звена цепи на основе дискретной
СФС в условиях комбинированных случайных воздействий 20
1.3.1. Модель звена в форме стохастических разностных
уравнений 21
1.3.2. Модель звена в форме расширенного векторного
уравнения Колмогорова-Чепмена 25
1.4. Модель цепи последовательно синхронизируемых генераторов
в форме системы расширенных векторных уравнений Колмогорова-Чепмена и уравнений преобразования координат 30
1.5. Линеаризованная модель цепи последовательно
синхронизируемых генераторов 35
1.5.1. Линеаризованная дискретная модель 35
1.5.2. Линеаризованная аналоговая модель 41
1.6. Выводы 43
Глава 2. Анализ и оптимизация статистических характеристик звена цепи на основе дискретной СФС 2-го порядка в условиях комбинированных случайных воздействий 46
2.1. Постановка задачи 46
2.2. Оптимизация статистических характеристик в линейном
приближении 47
2.3. Анализ статистических характеристик с помощью численного
решения расширенного векторного уравнения Колмогорова- Чепмена 54
2.3.1. Характеристики фазовой ошибки и фазовых
флуктуаций выходного сигнала звена на основе
бесфильтровой СФС 54
2.3.2. Анализ фазовой ошибки звена 2-го порядка 63
2.3.3. Характеристики фазовых флуктуаций на выходе звена
2-го порядка 67
2.4. Анализ статистических характеристик в линейном
приближении 71
2.4.1. Применение аналоговой модели 72
2.4.2. Применение дискретной модели 84
2.5. Выводы 92
Глава 3. Анализ и оптимизация статистических характеристик цепи последовательно синхронизируемых генераторов 95
3.1. Постановка задачи 95
3.2. Анализ и оптимизация цепи последовательно
синхронизируемых генераторов с помощью аппарата марковских процессов 96
3.3. Статистические характеристики цепи последовательно
синхронизируемых генераторов в линейном приближении для случая идентичных аналоговых звеньев 105
3.3.1. Случай бесфильтровых колец синхронизации 106
3.3.2. Случай колец синхронизации 2-го порядка 117
3.4. Статистические характеристики цепи последовательно
синхронизируемых генераторов в линейном приближении для индивидуальной настройки аналоговых звеньев 126
3.4.1. Случай бесфильтровых колец синхронизации 126
3.4.2. Случай колец синхронизации 2-го порядка 135
3.5. Статистические характеристики цепи последовательно
синхронизируемых генераторов в линейном приближении для случая идентичных дискретных звеньев 136
3.5.1. Случай бесфильтровых колец синхронизации 136
3.5.2. Случай колец синхронизации 2-го порядка 141
3.6. Статистические характеристики цепи последовательно
синхронизируемых генераторов в линейном приближении для индивидуальной настройки дискретных звеньев 144
3.6.1. Случай бесфильтровых колец синхронизации 145
3.6.2. Случай колец синхронизации 2-го порядка 150
3.7. Выводы 151
Глава 4. Разработка и исследование имитационной модели цепи последовательно синхронизируемых генераторов на основе дискретных СФС 154
4.1. Постановка задачи 154
4.2. Описание структурной схемы имитационной модели 155
4.3. Разработка методики проведения исследований
статистических характеристик сигналов на выходе цепи произвольной длины 163
4.4. Исследование имитационной модели для различных
случайных воздействий 168
4.4.1. Случай комбинированного случайного воздействия со
спектральной плотностью 1-го порядка 168
4.4.2. Случай комбинированного случайного воздействия со
спектральной плотностью 2-го и 3-го порядков 172
4.4.3. Исследование телекоммуникационных характеристик
качества сигнала на выходе системы 177
4.5. Выводы и сравнительный анализ результатов, полученных
различными методами 183
Заключение 185
Библиографический список 188
Приложение 1. Текст программы анализа характеристик качества сигнала на выходе цепи последовательно синхронизируемых генераторов в линейном приближении 198
Приложение 2. Текст программ обработки результатов имитационного моделирования цепи последовательно синхронизируемых генераторов
Задача взаимодействия двух и более генераторов для области радиотехники является достаточно традиционной [46] и связана, как правило, с обеспечением синхронных режимов нескольких колебательных процессов. Примером является задача о стабилизации частоты, в которой менее стабильный генератор синхронизируется от более стабильного [1-6, 11-14]. Сюда же можно отнести современные системы частотного синтеза, строящиеся по принципу последовательно-параллельной синхронизации генераторов на кратных частотах [6, 9, 10, 34, 35, 43-45]. В подобных структурах число связанных генераторов может быть достаточно большим. В последние годы с развитием синхронных цифровых систем передачи информации цепочки последовательно соединенных генераторов приобрели новые области применения. В некоторых случаях они используются для синхронизации работы разнесенных в пространстве радиотехнических систем. Так, например, в сети передачи данных синхронной цифровой иерархии (СЦИ) используется цепь синхронизации, включающая в себя десятки последовательно синхронизируемых генераторов [90, 102].
В связи с широким распространением и важностью цифровых сетей передачи данных, исследования, посвященные улучшению качества их работы, представляют большой научный и практический интерес. В том числе важным является вопрос об улучшении качества сигнала синхронизации. Для решения данного вопроса необходимы исследования работы цепочки последовательно соединенных дискретных систем фазовой синхронизации. В основном существующие алгоритмы улучшения качества сигнала синхронизации используют специальные метки качества сигнала, передаваемые по специальным служебным каналам. На их основе производится выбор наилучшего из имеющихся сигналов синхронизации. Подобные алгоритмы на сегодняшний день разработаны достаточно хорошо и позволяют создать надежную сеть синхронизации [107-109, 110-113].
Но у подобного подхода существует и ряд существенных недостатков. Во- первых, он не учитывает реального качества сигналов синхронизации. Вся информация о том, насколько этот сигнал хорош, заключена в метке. Во- вторых, этот метод не позволяет сказать, как можно улучшить качество сигнала
синхронизации, как настроить связующие звенья, чтобы на выходе цепочки был сигнал наилучшего качества. Решение этих задач весьма важно для проектирования и управления цепью синхронизации.
В то же время для анализа поведения цепи необходимо более детально изучить работу отдельных звеньев, в роли которых выступают дискретные системы фазовой синхронизации [102]. Системы фазовой синхронизации с элементами дискретизации интенсивно исследуются в последние годы [54, 67-69, 81]. Такие системы обладают рядом преимуществ по сравнению с чисто аналоговыми устройствами, такими как повышенная помехоустойчивость, простота реализации, малая потребляемая мощность. Указанные достоинства совместно с неуклонным ростом рабочих частот цифровой схемотехники позволяют строить высокоэффективные системы обработки информации, включающие в себя системы фазовой синхронизации [7-10, 15, 27, 31]. Большое количество областей применения данных устройств определяет интерес к исследованиям данного класса систем [27, 32-36, 43-45, 47-49].
Значительный интерес вызывают исследования, посвященные поведению этих устройств в условиях помеховых воздействий [19]. Данный факт обусловлен постоянным ростом требований на качество обработки информации со стороны пользователей. С другой стороны помеховые воздействия всегда имеют место. Зачастую ими нельзя пренебречь, и они определяют качество работы системы в целом. Поэтому анализ реакции на действие помех достаточно важен для практики [1-5, 12-14, 41, 50, 51, 53]. Основная часть работ в данной области посвящена исследованию влияния наиболее простых и распространенных помех в виде аддитивного широкополосного гауссовского шума [16, 17, 22-25, 88]. Однако не всегда этот вид помех является определяющим. В связи с этим последнее время ряд авторов проводит исследования, посвященные анализу поведения систем фазовой синхронизации при наличии на входе помех различного вида. Так в ряде работ изучается влияние детерминированных и случайных сосредоточенных по частоте помех на работу указанных устройств, в том числе и помех, по структуре повторяющих полезный сигнал [15-18, 52, 56, 57, 60, 61, 63-65]. Учет данного типа помех позволяет ответить на многие вопросы функционирования современных систем передачи информации в условиях сложной электромагнитной обстановки. Под данный тип помех подходят помехи других станций, работающих на близкой частоте, что характерно для сотовых систем, условий многолучевого распространения сигналов и т.д.
В то же время малоизученным или совсем неизученным остается поведение СФС при многих типах внешних воздействий, которые при некоторых условиях являются определяющими для качества работы систем фазовой синхронизации. В частности в случае анализа цепи последовательно синхронизируемых генераторов к таким воздействиям относятся фазовые шумы, присутствующие в различных сигналах. Их источники могут быть самыми различными [103, 104]. В некоторых случаях данные шумы являются основными, оказывающими влияние на функционирование системы. В ряде работ [90, 97, 102] показано, что на качество работы цифровых сетей передачи информации оказывают существенное влияние именно фазовые флуктуации сигналов. В связи с этим изучение данного вида воздействий является весьма актуальным. Однако круг работ, посвященных данной проблематике, весьма ограничен. К ним следует отнести работы [100, 102] а так же работы автора диссертации.
Для анализа поведения и статистических характеристик систем при наличии сложных воздействия необходимо обладать определенным математическим аппаратом. Исследование работы систем фазовой
синхронизации при наличии случайных воздействий ведется уже достаточно долго. За это время был разработан ряд подходов и методов к анализу данных устройств. Однако на этом пути существуют серьезные сложности. Данный факт связан с тем, что система фазовой синхронизации является сугубо нелинейной системой. Аналитические методики исследования таких устройств в большинстве случаев носят приближенный характер. В качестве примера таких подходов можно указать различные методы линеаризации и усреднения [20, 44]. На сегодняшний день одним из самых прогрессивных механизмов, позволяющих точно исследовать динамику нелинейных систем, является аппарат марковских процессов. Данный аппарат позволяет получить многие важные характеристики стохастических систем, такие как плотность распределения вероятности координат, среднее время достижения
синхронизма, среднее время до срыва синхронизма. Ввиду явных достоинств этого метода его применению к анализу различных систем посвящено достаточно много работ. К их числу относятся труды Тихонова В.И., Миронова М.А., Казакова В.А., Стратоновича Р.Л. [11, 21, 28]. Применением данного
метода к системам фазовой синхронизации, в том числе дискретным, занимались Шахтарин Б.И., Витерби А., Разевиг В.Д., Казаков Л.Н. и другие авторы [17, 25, 26, 56-58]. Ими наработаны основные методики и подходы, позволяющие применить аппарат марковских процессов к системам синхронизации, достаточно подробно проведен анализ поведения систем фазовой синхронизации в условиях аддитивных широкополосных шумов. В работах Башмакова М.В. [56-59, 61-65] рассмотрены статистические
характеристики СФС при наличии детерминированных или случайных узкополосных аддитивных помех. В то же время очень мало работ посвящено анализу систем фазовой синхронизации в условиях присутствия фазовых шумов. Данный вопрос только начинает изучаться. Кроме того, аппарат марковских процессов в том виде, в котором он применяется сегодня, позволяет получить характеристики фазовой ошибки. При анализе же цепочки последовательно соединенных дискретных систем фазовой синхронизации интерес представляют характеристики фазы выходного сигнала перестраиваемого генератора. На сегодняшний день подходы к решению данной проблемы не известны.
В итоге выполненных в диссертационной работе исследований получены следующие основные результаты:
1. Построена математическая модель дискретной системы фазовой синхронизации в форме векторного уравнения Колмогорова-Чепмена в условиях комбинированного флуктуационного воздействия, включающего в себя аддитивный белый гауссовский шум, белые частотные флуктуации входного сигнала и перестраиваемого генератора.
2. Разработана оригинальная методика расчета нестационарной плотности распределения вероятности фазовых флуктуаций выходного сигнала, основанная на расширенной марковской модели, представляющей собой векторное уравнение Колмогорова-Чепмена повышенной размерности.
3. Построена математическая модель цепи последовательно синхронизируемых с помощью дискретных СФС генераторов в виде комбинации векторных уравнений Колмогорова-Чепмена и уравнений перехода к плотности распределения вероятности выходных координат.
4. Построена линеаризованная модель цепи последовательно синхронизируемых с помощью СФС генераторов в условиях комбинированных флуктуационных воздействий в форме эквивалентного коэффициента передачи, позволяющая проводить параметрическую оптимизацию цепи произвольной длины, минимизирующую дисперсию фазовых флуктуаций выходного сигнала.
5. Предложена методика численного решения векторных уравнений Колмогорова-Чепмена повышенной размерности, ориентированная на расчет ПРВ фазовой ошибки и фазовых флуктуаций выходного сигнала. На основе методики получены зависимости дисперсий фазовой ошибки и фазовых флуктуаций выходного сигнала от параметров комбинированных воздействий и параметров системы. Исследовано влияние нестационарности фазовых флуктуаций выходного сигнала на величину оптимальной полосы удержания в системе.
6. Выполнен анализ статистических характеристик линеаризованных моделей звеньев цепи последовательно синхронизируемых с помощью различных систем фазовой синхронизации генераторов в случае флуктуационных воздействий с
полиномиальной спектральной плотностью. Получены графики зависимости дисперсии фазовых флуктуаций на выходе звена от полосы удержания и коэффициентов фильтра системы. Показано качественное отличие в поведении аналоговых и дискретных звеньев по отношению к шумам, существенная мощность которых сосредоточена в высокочастотной области. Проанализировано влияние параметров шумовых воздействий на величины оптимальных значений полосы удержания и коэффициентов фильтра.
7. Для линеаризованной модели получено условие на коэффициент передачи входного фазового шума, ограничивающее накопление выходных фазовых флуктуаций в заданном частотном диапазоне. Невыполнение условия ведет к резкому усилению флуктуаций с ростом длины цепи. Для ряда систем фазовой синхронизации получены аналитические выражения для области параметров, в которой выполняется указанное условие.
8. На основе марковской модели цепи последовательно синхронизируемых генераторов выполнен анализ цепи ограниченной длины, состоящей из нескольких звеньев. Получены кривые зависимости дисперсии фазовых флуктуаций на выходе цепи от параметров звеньев для различного числа входящих в систему генераторов для произвольных по мощности случайных воздействий. На основе численного решения векторных уравнений Колмогорова-Чепмена исследованы два алгоритма оптимизации нелинейной цепи: алгоритм гомогенной оптимизации, предполагающий одинаковую настройку всех звеньев, и алгоритм позвенной оптимизации, предполагающий индивидуальную настройку звеньев.
9. На основе линейной модели исследованы три алгоритма оптимизации цепи произвольной длины: гомогенная оптимизация, позвенная оптимизация и смешанный тип оптимизации. Показано, что в случае цепей большой длины, состоящей из однотипных генераторов гомогенный алгоритм обладает преимуществом перед позвенным, а самые лучшие результаты дает оптимизация смешанного типа, позволяя в ряде случаев получить выигрыш в длине цепи до 15¬20%. Для коротких цепей наибольший эффект достигается при позвенной оптимизации. Изучено влияние параметров флуктуационных воздействий на величину выигрыша того или иного способа оптимизации, а так же на величину оптимальных параметров звеньев.
10. Выполнена оптимизация цепей, состоящих из последовательно соединенных разнотипных генераторов. Показано, что при наличии в цепи высокостабильных генераторов наилучшие результаты показывает позвенный алгоритм оптимизации, поскольку позволяет наиболее полно использовать качество сигналов высокостабильных генераторов.
11. Разработана имитационная модель цепи последовательно синхронизируемых генераторов на основе пакетов динамического моделирования SystemView и Simulink. Предложено несколько методов формирования случайных процессов, по свойствам близких к фликкер-шумам. Для формирования во временной области использовалась система нелинейных дифференциальных уравнений Ланжевена, для формирования в спектральной области использовался формирующий фильтр нижних частот 8-го порядка. С помощью модели исследована зависимость дисперсии фазовых флуктуаций на выходе системы от параметров звеньев и мощности входных воздействий. В случае малой мощности результаты имитационного моделирования с высокой точностью совпадают с результатами анализа математической модели. В случае большой мощности наблюдается некоторое различие результатов, вызванное влиянием нелинейности цепи. Путем перехода к исследованию дисперсии частотных флуктуаций выходного сигнала решена проблема анализа статистических характеристик при неэргодичности процесса флуктуаций фазы.
12. Получены зависимости телекоммуникационных характеристик качества сигнала TDEV и TIE от времени наблюдения, пересчитанные из спектральных плотностей фазовых флуктуаций. Полученные кривые качественно совпадают с результатами, приведенными в работах других авторов для неоптимизированных цепей. На примере параметра TDEV показано, что шумы опорного генератора отфильтровываются тем лучше, чем длиннее цепь, а шумы перестраиваемых генераторов и каналов передачи данных накапливаются.
13. В работе приведены рекомендации по выбору типа и параметров генераторного оборудования, методик оптимизации цепи, а так же основных направлений улучшения качества выходных сигналов.
1. Системы фазовой синхронизации / Акимов В.Н., Белюстина Л.Н., Белых В.Н., и др.; Под ред. В.В. Шахгильдяна, Л.Н. Белюстиной. - М.: Радио и связь, 1982.- 288 с.
2. Линдсей В. Системы синхронизации в связи и управлении: Пер. с англ. / Под ред. Ю.Н. Бакаева и М.В. Капранова .-М.: Сов. Радио, 1978.- 600 с.
3. Витерби Э.Д. Принципы когерентной связи. - М.: Советское радио, 1970.— 350 с.
4. Шахгильдян В.В., Ляховкин А.А. Системы фазовой автоподстройки частоты. - М.: Радио и связь, 1972.- 310 с.
5. Аналоговые и цифровые синхронно-фазовые измерители и демодуляторы / А.Ф. Фомин, А.И. Хорошавин, О.И. Шелухин; Под. ред. А.Ф.Фомина. - М.: Радио и связь, 1987. - 248 с.
6. Roland E. Best. Phase-locked loops: design, simulation, and application. Third Edition. - McGrow-Hill, 1997. - 360 p.
7. Журавлев В.И. Поиск и синхронизация в широкополосных системах. - М.: Радио и связь, 1986.- 240 с.
8. Цифровые системы фазовой синхронизации / М.И. Жодзишский, С.Ю. Сила-Новицкий, В. А. Прасолов и др.; Под ред. М.И. Жодзишского. -М.: Сов. Радио, 1980. -208 с.
9. Цифровые радиоприемные системы: Справочник. / М.И. Жодзишский, Р.Б. Мазепа, Е.П. Овсянников и др.; Под ред. М.И. Жодзишского - М.: Радио и связь, 1990. - 208с.
10. Системы фазовой синхронизации с элементами дискретизации. 2-е изд., доп. и перераб. / В.В. Шахгильдян, А. А. Ляховкин, В. Л. Карякин и др.; Под ред. В.В. Шахгильдяна. - М.: Радио и связь, 1989. - 320 с.
11. Тихонов В.И., Миронов М.А. Марковские процессы. - М.: Советское радио, 1977. - 525 с.
12. Тихонов В.И. Статистическая радиотехника. 2-е изд., перераб. и доп. - М.: Радио и связь, 1982. - 624 с.
13. Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем: Учебное пособие. - М.: Радио и связь, 1991. - 608 с.
14. Шахтарин Б.И. Случайные процессы в радиотехнике: Учебное пособие. - М.: Радио и связь, 2000. - 584 с.
15. Феер К. Беспроводная цифровая связь. Пер. с англ. под ред. В.И. Журавлева. - М.: Радио и связь, 2000. - 520 с.
16. Шахтарин Б.И. Анализ систем синхронизации при наличии помех. - М.: ИПРЖР, 1996. - 252 с.
17. Шахтарин Б.И. Статистическая динамика систем синхронизации. - М.: Радио и связь, 1998. - 488 с.
18. Тузов Г.И. Выделение и обработка информации в доплеровских системах. - М.: Советское радио, 1967. - 256 с.
19. Помехозащищенность радиосистем со сложными сигналами. / Тузов Г.И., Сивов В.А., Прытков В.И. и др.; Под ред. Тузова Г.И. - М.: Связь, 1985. - 279 с.
20. Шахтарин Б.И. Анализ систем синхронизации методом усреднения. - М.: Радио и связь .-1999. - 496 с.
21. Стратонович Р.Л. Избранные вопросы теории флуктуаций в радиотехнике. - М.: Советское радио, 1961. - 210 с.
22. Тихонов В.И. Влияние шумов на работу схемы фазовой автоподстройки частоты // Автоматика и телемеханика. - 1959. - №9. - С. 1188-1196.
23. Тихонов В.И. Работа фазовой автоподстройки частоты при наличии шумов // Автоматика и телемеханика. - 1960. - №3. - С. 301-309.
24. Челышев К.Б. Воздействие внешнего шума на фазовую автоподстройку частоты // Автоматика и телемеханика. - 1963. - №7. - С. 942-949.
25. Витерби А. Исследование динамики систем фазовой автоподстройки частоты в присутствии шумов с помощью уравнения Фоккера-Планка // ТИИЭР. - 1963. - Т. 51, №12. - С. 1704-1722.
26. Обрезков Г.В., Разевиг В.Г. Методы анализа срыва слежения. - М.: Советское радио, 1972.
27. Пестряков А.В. Разработка и применение прикладных методов анализа дискретных систем фазовой синхронизации для устройств синтеза и стабилизации частоты. Дис. докт. техн. наук. - Москва, - 1992. - 472 с.
28. Казаков В.А. Введение в теорию марковских процессов и некоторые радиотехнические задачи.- М.: Советское радио, 1977.- 408 с.
29. Рытов С.М. Введение в статистическую радиофизику. Ч.1. Случайные процессы. - М.: Наука, 1976. - 494 с.
30. Статистическая радиотехника. Примеры и задачи: Учебн. пос. для вузов. 2¬е изд. / Горяинов В.Т., Журавлев А.Г., Тихонов В.И.; Под ред. В.И. Тихонова. - М.: Сов. радио, 1980. - 544 с.
31. Gill G.S., Gupta S.C. First-order discrete phase-locked loop with applications to demodulation of angle-modulated carrier // IEEE Trans. -1972. - V.COM- 20. -P. 615-623.
32. Шахгильдян В.В., Пестряков А.В. Исследование динамики системы ИФАПЧ с цифровым интегратором / Системы и средства передачи информации по каналам связи // Тр. Учебн. Ин-тов связи. -Л.: ЛЭИС, 1980. -С. 122-132.
33. Иванов В.А., Ющенко А.С. Теория дискретных систем автоматического управления. - М.: Наука, 1983. - 336 с.
34. Казаков Л.Н. Математическое моделирование дискретных систем с частотным управлением: Учеб. пос. / Яр. гос. ун-т им. П.Г. Демидова.- Ярославль, 1993. - 44 с
35. Казаков Л.Н., Палей Д.Э., Пономарев Н.Ю. Нелинейная динамика дискретных СФС с кусочно-линейной характеристикой детектора: Учеб. пос. / Яр. гос. ун-т им. П.Г. Демидова.- Ярославль, 1998. - 127 с.
36. Weinberg A., Liu B. Discrete Time Analyses of Nonuniform Sampling First- and Second-Order Digital Phase Lock Loops // IEEE Trans. -1974. -V. COM- 22. -N2. 123-137.
37. Казаков Л.Н., Башмаков М.В. Математические модели стохастических цифровых систем фазовой синхронизации: Учеб. пос. / Яр. гос. ун-т им. П.Г. Демидова.- Ярославль, 2001.- 135 с.
38. Битюцкий В.И., Сердюков П.Н. Оценка времени до срыва синхронизма в импульсной системе ФАПЧ // Радиотехника. - 1973. - №8. - С. 95-97.
39. Белых В.Н., Максаков В.П. Статистическая динамика цифровой системы фазовой синхронизации первого порядка // Радиотехника и электроника. - 1979. - №5. - С. 965-974.
40. Шахтарин Б.И., Сизых В.В., Курочка Б.Я. Исследование статистических характеристик дискретных ФАС первого порядка // Вестник МГТУ. Сер. Приборостроение. - 1992. - №3. - С. 89-110.
41. Фомин А.Ф., Урядников Ю.Ф. Помехоустойчивость систем передачи непрерывных сообщений с импульсными следящими демодуляторами // Радиотехника. -1976. -Т. 31, №9. -С. 46-54.
42. Kelly C.N., Gupta S.C. The digital phase-locked loop as a near-optimum FM demodulator // IEEE Trans. -1972. -V.COM. -20.-P. 406-411.
43. Пестряков А.В. Применение асимптотических методов для анализа дискретных систем фазовой синхронизации // Теоретическая электроника.
Республ. межвед. научн. технич. сб. - Львовский Гос. ун-т. -1989. - Вып.47. -С. 135-139.
44. Пестряков А.В. Использование метода усреднения для анализа импульсных систем фазовой синхронизации // Радиотехника и электроника. -1990. -Т. 35, №. 11. - С. 2334-2340.
45. Палей Д.Э., Казаков Л.Н. Динамика дискретной системы второго порядка с несколькими нелинейностями // Изв. вузов. Радиоэлектроника. - 1995. - №3. - С. 61-68.
46. Капранов М.В., Кулешов В.Н., Уткин Г.М. Теория колебаний в радиотехнике. - М.: Наука, 1984. - 320 с.
47. Казаков Л.Н., Палей Д.Э. Анализ полосы захвата импульсной системы фазовой синхронизации второго порядка // Радиотехника и электроника. - 1995. - Т. 40, № 5. - С. 823-828.
48. Пономарев Н.Ю., Казаков Л.Н. Устойчивость в целом импульсной системы фазовой синхронизации второго порядка с трапециевидной характеристикой детектора // Радиотехника и электроника. - 1997. - Т. 42, № 12. - С. 1459-1464.
49. Казаков Л.Н., Палей Д.Э. Анализ полосы захвата импульсной системы фазовой синхронизации третьего порядка с пилообразной характеристикой детектора // Радиотехника. - 1998. - № 1.- С. 29-35.
50. Гаврилюк М.С., Кулешов В.Н. О фильтрации помех в линейной модели импульсно-фазовой системы ФАП с интегрирующим фильтром // Радиотехника. - 1970. - № 10.- С. 98-100.
51. Казаков Л.Н., Захаров Д.Е., Палей Д.Э. Устойчивость дискретной СФС с нелинейным фильтром при наличии шума // Радио и волоконно¬оптическая связь, локация и навигация: Материалы ВНТК. -Воронеж, 1997.- 7 с.
52. Башмаков М.В., Захаров Д.Е., Казаков Л.Н. Анализ выходного сигнала цифрового синхронно-фазового демодулятора при наличии на входе гармонической помехи // Современные проблемы радиофизики и электроники: Юб. сб. науч. тр. / Яросл. гос. ун-т. - 1998. - С. 118-125.
53. Казаков Л.Н., Башмаков М.В. Помехоустойчивость цифрового синхронно¬фазового демодулятора с многоуровневым квадратурным преобразованием входного сигнала // Цифровая обработка сигналов и ее применение: Материалы 2-ой международной конференции, 21-24 сентября 1999 г. - Москва, 1999. - 6 с.
54. Казаков Л.Н., Пономарев Н.Ю., Казаков А.Л. Цифровой синхронно¬фазовый демодулятор на основе ЦСФС 3-го порядка // Цифровая обработка сигналов и ее применение: Материалы 2-ой международной конференции, 21-24 сентября 1999 г. - Москва, 1999.- 7 с.
55. Брюханов Ю.А. Цифровые цепи и сигналы: Учеб. пос. - Ярославль, 1999. -
152 с.
56. Башмаков М.В., Казаков Л.Н. Статистические характеристики дискретной СФС 2-го порядка при наличии на входе гармонической помехи // Электросвязь. - 2001. - № 6. - С. 25-28.
57. Башмаков М.В. Расчет плотности вероятности фазовой ошибки цифровой СФС в условиях детерминированных воздействий // Радиофизика и электроника на пороге 21 века: Сб. науч. тр. молод. учен., асп. и студ. шк.- семинара июль 2001 г. - Ярославль, 2001.- С. 28-40.
58. Башмаков М.В., Кукушкин И.А., Душин И.Н. Анализ времени до срыва слежения в дискретной СФС 2-го порядка // Радиофизика и электроника на пороге 21 века: Сб. науч. тр. молод. учен., асп. и студ. шк.-семинара июль 2001 г. - Ярославль, 2001.- С. 40-50.
59. Башмаков М.В., Казаков Л.Н. Помехоустойчивость цифрового синхронно¬фазового демодулятора с многоуровневым квадратурным преобразованием входного сигнала // Цифровая обработка сигналов и ее применение: Сб. докл. 2-й межд. конф. 21-24 сентября 1999. - Москва, 1999.- С. 446-451.
60. Душин И.Н., Башмаков М.В. Экспериментальное исследование статистических характеристик цифровой бинарной СФС при наличии прицельной по частоте помехи // Нелинейная динамика электронных систем: Сб. докл. молод. учен., асп. и студ. шк.-семинара 11-13 окт. 2000 г.- Ярославль, 2000.- С. 66-73.
61. Башмаков М.В., Казаков Л.Н. Статистические свойства дискретной СФС при наличии прицельной по частоте помехи // Труды LVI научной сессии, посвященной Дню радио, 16-17 мая 2001 г.- Москва, 2001.- С. 401-404.
62. Башмаков М.В., Казаков Л.Н., Кукушкин И.А. Сравнительный анализ методов оценки дисперсии фазовой ошибки дискретных СФС // Труды LVI научной сессии, посвященной Дню радио, 16-17 мая 2001 г.- Москва, 2001. - С. 404-406.
63. Башмаков М.В., Казаков Л.Н. Помехоустойчивость цифрового синхронно¬фазового демодулятора при сосредоточенной по частоте помехе // Перспективные технологии в средствах передачи информации -
ПТСПИ’2001: Тр. IV межд. науч. конф. 15-17 авг. 2001 г. - Владимир- Суздаль, 2001.- С. 158-161.
64. Казаков Л.Н., Башмаков М.В. Статистические характеристики цифрового синхронно-фазового демодулятора в условиях комбинированного входного воздействия // Теория связи и обработка сигналов: Тр. межд. конф. IEEE/ICC2001 13-15 июня 2001 г.- С.-Петербург, 2001.- С. 11-14.
65. Казаков Л.Н., Башмаков М.В. Помехоустойчивость цифрового синхронно¬фазового демодулятора в условиях узкополосных помех по основному каналу// Теория и техника передачи, приема и обработки информации: Тр. 7-й межд. конф. 1-4 октября 2001 г.- Харьков-Туапсе, 2001.- С. 150-152.
66. Левин Б.Р., Шварц В. Вероятностные модели и методы в системах связи и управления. - М.: Радио и связь, 1985. - 312 с.
67. Шахтарин Б.И. Анализ кусочно-линейных систем с фазовым
регулированием. - М.: Машиностроение, 1991. - 192 с.
68. Цыпкин Я.З., Попков Ю.С. Теория нелинейных импульсных систем. -М. Наука, 1978.
69. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. - М.: Наука, 1975. - 768 с.
70. Бахвалов Н.С. Численные методы. - М.: Наука, 1973. - 632 с.
71. Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). -М.: Наука, 1977. - 832 с.
72. Феллер В. Введение в теорию вероятностей и ее приложения. - М.: Мир, 1964. - 498 с.
73. Деч Г. Руководство к практическому применению преобразования Лапласа и Z-преобразования.- М.: Наука, 1971. - 288 с.
74. Александров А.С., Тимофеев А.А., Чвало В.А., Якимов И.М. Применение цепей Маркова для анализа системы тактовой синхронизации, функционирующей в условиях комбинированных случайных воздействий. // Вестник МГТУ им. Н.Э. Баумана. - 2004. - №3. - С. 83-95.