Обработка и анализ данных становятся все более значимыми в астрономии. Это можно объяснить эволюцией приемников излучения - в наше время размеры ПЗС матриц могут достигать 16000 х 16000 пикселей и более. Следствием этого является огромное количество получаемой информации, которую невозможно обрабатывать вручную. Поэтому нужны методы и алгоритмы, позволяющие автоматически обрабатывать полученные данные.
Большую часть данных получают из снимков, о них и пойдет речь в этой работе. Чаще всего изображения сильно зашумлены, объекты в низ¬ком разрешении на них сложно идентифицировать, присутствует эффект проекции на снимке, особенно в переполненных звездами полях, что осложняет классификацию. Для того, чтобы извлечь информацию о каждом объекте, применяют методы математической обработки снимков, начиная от простых преобразований, например, матричной свертки, до сложных де¬композиций изображений при помощи вейвлет преобразований. Это позволяет анализировать снимок на разных масштабах, составлять многоуровневое представление объекта - выделить самые мелкие и более крупные образования. Этот подход является очень сильным инструментом в анализе данных.
В работе ставилась цель выделить характеристики скоплений, связанных с LBV, путем обработки снимков, идентифицировать аналогичные объекты на всем изображении. Решение этой задачи можно разделить на три этапа:
• Анализ и сбор данных - первичная редукция
• Обработка снимков - математическая обработка,например, очистка от шума, выделение исследуемых объектов, фильтрация изображения
• Выделение необходимых критериев для идентификации скоплений, классификация объектов на снимке
В работе были изложены основные методы обработки астрономических снимков при помощи пространственных и адаптивных фильтров,пороговой обработки, Фурье и вейвлет-анализа.
В первой части диплома на примерах показано преимущество многоуровневых преобразований над стандартными методами фильтрации изображений (например, Фурье). Далее представлен алгоритм trous-вейвлет преобразования, алгоритм и его отладка на модельных решениях — одно¬мерных, двумерных(гауссов шум) и реальных данных (спектр NGC 4395, снимки NGC 2997, NGC 5194).
Во второй части работы изложены алгоритмы, используемые в современном астрономическом программном обеспечении, например 3a-clipping или пороговая обработка(hard-thresholding), а так же их адаптация в рамках многоуровневой модели. Такой подход к фильтрации показал очень хорошие результаты, что показано в Гл.4.
Далее в рамках многоуровневой модели был представлен алгоритм поиска объектов на снимках, а так же примеры использования ПО(SExtractor) с аналогичным подходом, который был улучшен в некоторых случаях с по¬мощью представленных преобразований (например, при поиске объектов в переполненных звездами областях).
В последней главе представленные инструменты были использованы для поиска молодых звездных образований в галактике М33. Статистически доказана связь LBV-звезд с найденными скоплениями.