Исследование динамики дискретных систем фазовой синхронизации второго порядка с нелинейным фильтром
|
ВВЕДЕНИЕ 5
ГЛАВА I. Математические модели дискретных СФС с двумя
нелинейностями 17
1.1. Постановка задачи 17
1.2. Математическая модель цифровой СФС 18
1.3. Математическая модель импульсной СФС 24
1.4. Математическая модель импульсно-цифровой СФС 29
1.5. Выводы 34
ГЛАВА 2. Динамика ДСФС с пилообразной характеристикой детектора.... 36
2.1. Система с линейным фильтром в цепи управления 38
2.1.1. Общие свойства СФС с пилообразной характеристикой детектора 39
2.1.2. Система с пропорционально интегрирующим фильтром в цепи управления 44
2.1.3. Система с интегратором в цепи управления 52
2.2. Система с ограничивающим фильтром в цепи управления 59
2.2.1. Общие свойства ДСФС с ограничивающим фильтром 59
2.2.2. Система с пропорционально интегрирующим фильтром в цепи управления 61
2.2.3. Система с интегратором в цепи управления 71
2.3. Система с пилообразным фильтром в цепи управления 75
2.3.1. Общие свойства ДСФС с пилообразным фильтром 75
2.3.2. Система с пропорционально интегрирующим фильтром в цепи управления 79
2.3.3. Система с интегратором в цепи управления 86
2.4. Выводы 88
2
ГЛАВА 3. Динамика ДСФС с синусоидальной характеристикой детектора 91
3.1. Система с линейным фильтром в цепи управления 93
3.1.1. Система с пропорционально интегрирующим фильтром в цепи управления 93
3.1.2. Система с интегратором в цепи управления 102
3.2. Система с ограничивающим фильтром в цепи управления 105
3.2.1. Общие свойства ДСФС с синусоидальной характеристикой
ФД и ограничивающим фильтром 105
3.2.2. Система с пропорционально интегрирующим фильтром в цепи управления 108
3.2.3. Система с интегратором в цепи управления 115
3.3. Система с пилообразным фильтром в цепи управления 120
3.3.1. Общие свойства ДСФС синусоидальной характеристикой
ФД и пилообразным фильтром 120
3.3.2. Система с пропорционально интегрирующим фильтром в цепи управления 124
3.3.3. Система с интегратором в цепи управления 129
3.4. Статистическая динамика ДСФС с синусоидальным детектором и нелинейным фильтром 133
3.4.1. Постановка задачи 133
3.4.2. Стохастическая модель и описание движений в ДСФС с нелинейным фильтром 134
3.4.3. Исследование статистической области глобальной устойчивости 136
3.5. Выводы 142
3
ГЛАВА 4. Экспериментальные исследования ДСФС с нелинейным
фильтром 145
4.1. Постановка задачи 145
4.2. Компьютерное моделирование импульсной СФС с интегратором в цепи управления 147
4.2.1. Блок-схема моделирующего алгоритма 147
4.2.2. Анализ результатов исследования компьютерной модели.... 151
4.3. Экспериментальные исследования однокольцевого синтезатора частоты КВ-диапазона 155
4.4. Экспериментальные исследования цифровой СФС с квадратурным аналого-цифровым преобразователем на входе 157
4.4.1. Описание програмно-аппаратного комплекса «Цифровые системы» 157
4.4.2. Блок-схема алгоритма экспериментальных исследований.... 161
4.4.3. Анализ результатов эксперимента 162
4.5. Выводы 165
ЗАКЛЮЧЕНИЕ 167
ЛИТЕРАТУРА 172
ПРИЛОЖЕНИЕ 1 180
ПРИЛОЖЕНИЕ 2 183
4
ГЛАВА I. Математические модели дискретных СФС с двумя
нелинейностями 17
1.1. Постановка задачи 17
1.2. Математическая модель цифровой СФС 18
1.3. Математическая модель импульсной СФС 24
1.4. Математическая модель импульсно-цифровой СФС 29
1.5. Выводы 34
ГЛАВА 2. Динамика ДСФС с пилообразной характеристикой детектора.... 36
2.1. Система с линейным фильтром в цепи управления 38
2.1.1. Общие свойства СФС с пилообразной характеристикой детектора 39
2.1.2. Система с пропорционально интегрирующим фильтром в цепи управления 44
2.1.3. Система с интегратором в цепи управления 52
2.2. Система с ограничивающим фильтром в цепи управления 59
2.2.1. Общие свойства ДСФС с ограничивающим фильтром 59
2.2.2. Система с пропорционально интегрирующим фильтром в цепи управления 61
2.2.3. Система с интегратором в цепи управления 71
2.3. Система с пилообразным фильтром в цепи управления 75
2.3.1. Общие свойства ДСФС с пилообразным фильтром 75
2.3.2. Система с пропорционально интегрирующим фильтром в цепи управления 79
2.3.3. Система с интегратором в цепи управления 86
2.4. Выводы 88
2
ГЛАВА 3. Динамика ДСФС с синусоидальной характеристикой детектора 91
3.1. Система с линейным фильтром в цепи управления 93
3.1.1. Система с пропорционально интегрирующим фильтром в цепи управления 93
3.1.2. Система с интегратором в цепи управления 102
3.2. Система с ограничивающим фильтром в цепи управления 105
3.2.1. Общие свойства ДСФС с синусоидальной характеристикой
ФД и ограничивающим фильтром 105
3.2.2. Система с пропорционально интегрирующим фильтром в цепи управления 108
3.2.3. Система с интегратором в цепи управления 115
3.3. Система с пилообразным фильтром в цепи управления 120
3.3.1. Общие свойства ДСФС синусоидальной характеристикой
ФД и пилообразным фильтром 120
3.3.2. Система с пропорционально интегрирующим фильтром в цепи управления 124
3.3.3. Система с интегратором в цепи управления 129
3.4. Статистическая динамика ДСФС с синусоидальным детектором и нелинейным фильтром 133
3.4.1. Постановка задачи 133
3.4.2. Стохастическая модель и описание движений в ДСФС с нелинейным фильтром 134
3.4.3. Исследование статистической области глобальной устойчивости 136
3.5. Выводы 142
3
ГЛАВА 4. Экспериментальные исследования ДСФС с нелинейным
фильтром 145
4.1. Постановка задачи 145
4.2. Компьютерное моделирование импульсной СФС с интегратором в цепи управления 147
4.2.1. Блок-схема моделирующего алгоритма 147
4.2.2. Анализ результатов исследования компьютерной модели.... 151
4.3. Экспериментальные исследования однокольцевого синтезатора частоты КВ-диапазона 155
4.4. Экспериментальные исследования цифровой СФС с квадратурным аналого-цифровым преобразователем на входе 157
4.4.1. Описание програмно-аппаратного комплекса «Цифровые системы» 157
4.4.2. Блок-схема алгоритма экспериментальных исследований.... 161
4.4.3. Анализ результатов эксперимента 162
4.5. Выводы 165
ЗАКЛЮЧЕНИЕ 167
ЛИТЕРАТУРА 172
ПРИЛОЖЕНИЕ 1 180
ПРИЛОЖЕНИЕ 2 183
4
Системы фазовой синхронизации (СФС) нашли в настоящее время широкое применение во многих областях радиотехники, таких как радиопередающие и радиоприемные системы, радиолокация и радионавигация, радиоизмерительная техника и т. д. [1-6]. Примером могут служить современные цифровые радиоприемные системы, в которых с помощью СФС решается целый ряд задач. Среди них синхронизация несущих колебаний, синхронизация и демодуляция поднесущих и модулирующих колебаний, синхронизация и демодуляция двоичных символов цифровой информации, синхронизация и свертка псевдослучайной последовательности в системах связи с использованием широкополосных сигналов [7-11].
Как правило, основу вышеперечисленных систем составляют дискретные системы фазовой синхронизации (ДСФС). Путем оптимизации структуры колец, типов входящих в них узлов, и, в первую очередь, фильтров цепи управления можно создавать варианты систем, обладающие требуемыми характеристиками по точности работы, быстродействию, помехоустойчивости для различных типов входных сигналов и законов модуляции [10,11]. За счет усложнения алгоритмов обработки и реализующих их устройств появляется возможность создавать гибкие алгоритмы обработки информации, оптимизации различных параметров и характеристик.
Отдельно следует сказать о системах частотного синтеза, которые строятся на основе дискретных колец фазовой синхронизации [12-19]. В диапазонах метровых, дециметровых и сантиметровых волн подобные системы пользуются большой популярностью. Здесь также за счет усложнения цепей управления, и соответственно алгоритмов управления можно значительно повысить эффективность, расширить функциональные возможности. Например, наряду с традиционным применением использование колец, обладающих высокими астатическими свойствами, позволяет совместить в синтезаторе функцию синтеза высокостабильной по частоте несущей с ее угловой модуляцией [22,23]. Использование различных режимов управления фильтрами, как правило нелинейными, позволяет достичь высоких характеристик синтезируемых сигналов.
5
Приведенные примеры говорят о том, что существует устойчивая тенденция расширения области применения систем фазовой синхронизации. Развитие дискретных и цифровых технологий только усиливает ее. С другой стороны, необходимо понимать, что увеличение области применения, связанное в том числе и с расширением функциональных возможностей СФС, предполагает усложнение алгоритмов управления, а это напрямую связано с использованием сугубо нелинейных режимов функционирования.
В пользу этого говорит хотя бы следующий очевидный факт. Для эффективного использования СФС необходимо, чтобы состояние синхронизма обеспечивалось как можно в более широкой области значений параметров и начальных расстроек по частоте. Это, в свою очередь, невозможно без функционирования системы на границе предельных нелинейных режимов. При этом нелинейные свойства будут определяться не только фазовым детектором, но и другими звеньями, например фильтром цепи управления. Так наличие в кольце СФС фильтра нижних частот астатического типа (аналогового для импульсных систем и цифрового для цифровых систем) при наличии больших расстроек по частоте зачастую приводит к подобным режимам. Вид нелинейность фильтра зависит от конкретной реализации и может быть различным.
Другим примером может служить искусственное введение нелинейности в цепь управления с целью придания системе требуемых свойств и характеристик. Примером может служить двусторонний ограничитель для уменьшения диапазона расстроек по частоте. Подобная нелинейность позволяет избежать возникновения кратных захватов по частоте и других паразитных движений. Т.е., удачный выбор нелинейного фильтра позволяет не только оптимизировать динамические свойства системы, такие как область устойчивости в большом или в целом, характер движения, переходные процессы, но и придавать системе совершенно новые качества, получение которых невозможно в системе с линейным фильтром.
Таким образом, можно утверждать, что задача повышения эффективности существующих и вновь созданных типов устройств на основе дискретных СФС достаточно актуальна. С другой стороны решение этой проблемы неразрывно
6
связано с анализом нелинейных режимов систем, при котором учитываются не только нелинейные свойства фазового детектора, но и других узлов - в первую очередь фильтра нижних частот цепи управления. Т.е. речь идет об исследовании моделей дискретных СФС, имеющих несколько нелинейностей. При этом одна из них периодическая, обусловленная фазовым детектором (синусоидальная, пилообразная, треугольная и т.д.), вторая, обусловленная нелинейными свойствами фильтра, может быть периодической, либо непериодической - ограничивающей. Периодическая (чаще пилообразная) нелинейность характерна для цифровых интегрирующих фильтров со сбросом по переполнению [7,14]. Нелинейность ограничивающего типа характерна для аналоговых фильтров (например при реализации их на операционном усилителе) и цифровых с переполнением без сброса [3,7,14].
Как правило, основу вышеперечисленных систем составляют дискретные системы фазовой синхронизации (ДСФС). Путем оптимизации структуры колец, типов входящих в них узлов, и, в первую очередь, фильтров цепи управления можно создавать варианты систем, обладающие требуемыми характеристиками по точности работы, быстродействию, помехоустойчивости для различных типов входных сигналов и законов модуляции [10,11]. За счет усложнения алгоритмов обработки и реализующих их устройств появляется возможность создавать гибкие алгоритмы обработки информации, оптимизации различных параметров и характеристик.
Отдельно следует сказать о системах частотного синтеза, которые строятся на основе дискретных колец фазовой синхронизации [12-19]. В диапазонах метровых, дециметровых и сантиметровых волн подобные системы пользуются большой популярностью. Здесь также за счет усложнения цепей управления, и соответственно алгоритмов управления можно значительно повысить эффективность, расширить функциональные возможности. Например, наряду с традиционным применением использование колец, обладающих высокими астатическими свойствами, позволяет совместить в синтезаторе функцию синтеза высокостабильной по частоте несущей с ее угловой модуляцией [22,23]. Использование различных режимов управления фильтрами, как правило нелинейными, позволяет достичь высоких характеристик синтезируемых сигналов.
5
Приведенные примеры говорят о том, что существует устойчивая тенденция расширения области применения систем фазовой синхронизации. Развитие дискретных и цифровых технологий только усиливает ее. С другой стороны, необходимо понимать, что увеличение области применения, связанное в том числе и с расширением функциональных возможностей СФС, предполагает усложнение алгоритмов управления, а это напрямую связано с использованием сугубо нелинейных режимов функционирования.
В пользу этого говорит хотя бы следующий очевидный факт. Для эффективного использования СФС необходимо, чтобы состояние синхронизма обеспечивалось как можно в более широкой области значений параметров и начальных расстроек по частоте. Это, в свою очередь, невозможно без функционирования системы на границе предельных нелинейных режимов. При этом нелинейные свойства будут определяться не только фазовым детектором, но и другими звеньями, например фильтром цепи управления. Так наличие в кольце СФС фильтра нижних частот астатического типа (аналогового для импульсных систем и цифрового для цифровых систем) при наличии больших расстроек по частоте зачастую приводит к подобным режимам. Вид нелинейность фильтра зависит от конкретной реализации и может быть различным.
Другим примером может служить искусственное введение нелинейности в цепь управления с целью придания системе требуемых свойств и характеристик. Примером может служить двусторонний ограничитель для уменьшения диапазона расстроек по частоте. Подобная нелинейность позволяет избежать возникновения кратных захватов по частоте и других паразитных движений. Т.е., удачный выбор нелинейного фильтра позволяет не только оптимизировать динамические свойства системы, такие как область устойчивости в большом или в целом, характер движения, переходные процессы, но и придавать системе совершенно новые качества, получение которых невозможно в системе с линейным фильтром.
Таким образом, можно утверждать, что задача повышения эффективности существующих и вновь созданных типов устройств на основе дискретных СФС достаточно актуальна. С другой стороны решение этой проблемы неразрывно
6
связано с анализом нелинейных режимов систем, при котором учитываются не только нелинейные свойства фазового детектора, но и других узлов - в первую очередь фильтра нижних частот цепи управления. Т.е. речь идет об исследовании моделей дискретных СФС, имеющих несколько нелинейностей. При этом одна из них периодическая, обусловленная фазовым детектором (синусоидальная, пилообразная, треугольная и т.д.), вторая, обусловленная нелинейными свойствами фильтра, может быть периодической, либо непериодической - ограничивающей. Периодическая (чаще пилообразная) нелинейность характерна для цифровых интегрирующих фильтров со сбросом по переполнению [7,14]. Нелинейность ограничивающего типа характерна для аналоговых фильтров (например при реализации их на операционном усилителе) и цифровых с переполнением без сброса [3,7,14].
1. Для проверки результатов анализа обобщенной модели и проведения дополнительных исследований, учитывающих допущения, сделанные при выводе обобщенной модели, разработана компьютерная модель импульсной и цифровой систем фазовой синхронизации. Модель реализована в виде программного комплекса для ЭВМ и позволяет проводить исследования динамических характеристик системы, включая определение полосы захвата для широкого диапазона изменения параметров системы.
2. С помощью компьютерной модели исследована ИСФС с ограничивающим интегратором в цепи управления. Исследования показали качественное совпадение результатов компьютерного эксперимента и исследований обобщенной модели. Количественные отличия связаны с учетом в компьютерной модели переменного интервала дискретизации и произвольного времени срабатывания нелинейности фильтра. В частности установлено, что за счет переменного интервала дискретизации для положительных расстроек области существования движений, ограничивающих полосу захвата, перемещаются в область меньших усилений. И наоборот, для отрицательных расстроек - в область больших усилений. При этом для положительных расстроек полоса захвата компьютерной модели проходит ниже значений, полученных при исследовании обобщенной модели, для отрицательных расстроек - выше.
3. С целью проверки результатов исследования обобщенной модели ИСФС с нелинейным интегратором разработан лабораторный модуль однокольцевого синтезатора частоты КВ-диапазона. Исследования синтезатора показали высокую степень совпадения экспериментальных результатов и результатов компьютерного моделирования для различных значений физически реализуемых параметров. Подтверждены качественно и количественно все тенденции изменения динамических свойств ИСФС.
4. С целью проверки результатов исследования обобщенной модели цифровых СФС был разработан программно-аппаратный комплекс, позволяющий выполнять компьютерные исследования ЦСФС с нелинейным фильтром и исследовать компьютерную модель. Исследования системы с различными типами нелинейных фильтров в цепи управления:
165
ограничивающим и пилообразным ПИФ, пилообразным интегратором показали высокое совпадение с результатами исследования обобщенной модели.
5. Применение програмно-аппаратного комплекса в режиме работы с реальным сигналом также подтвердило совпадение с результатами исследований обобщенной модели. Некоторая разница объясняется не функционированием программной части системы (собственно ЦСФС), а неидентичностью квадратурных каналов входного цифро-аналогового преобразователя.
6. Выработаны рекомендации по управлению состоянием системы с целью расширения полосы захвата. Для импульсных и цифровых систем с ограничивающим фильтром они заключаются в предустановке начального состояния интегратора в насыщение, знак которого зависит от знака начальной расстройки. Для цифровых систем с пилообразным фильтром - в предустановке знака начальной разности фаз в зависимости от знака частотной расстройки.
2. С помощью компьютерной модели исследована ИСФС с ограничивающим интегратором в цепи управления. Исследования показали качественное совпадение результатов компьютерного эксперимента и исследований обобщенной модели. Количественные отличия связаны с учетом в компьютерной модели переменного интервала дискретизации и произвольного времени срабатывания нелинейности фильтра. В частности установлено, что за счет переменного интервала дискретизации для положительных расстроек области существования движений, ограничивающих полосу захвата, перемещаются в область меньших усилений. И наоборот, для отрицательных расстроек - в область больших усилений. При этом для положительных расстроек полоса захвата компьютерной модели проходит ниже значений, полученных при исследовании обобщенной модели, для отрицательных расстроек - выше.
3. С целью проверки результатов исследования обобщенной модели ИСФС с нелинейным интегратором разработан лабораторный модуль однокольцевого синтезатора частоты КВ-диапазона. Исследования синтезатора показали высокую степень совпадения экспериментальных результатов и результатов компьютерного моделирования для различных значений физически реализуемых параметров. Подтверждены качественно и количественно все тенденции изменения динамических свойств ИСФС.
4. С целью проверки результатов исследования обобщенной модели цифровых СФС был разработан программно-аппаратный комплекс, позволяющий выполнять компьютерные исследования ЦСФС с нелинейным фильтром и исследовать компьютерную модель. Исследования системы с различными типами нелинейных фильтров в цепи управления:
165
ограничивающим и пилообразным ПИФ, пилообразным интегратором показали высокое совпадение с результатами исследования обобщенной модели.
5. Применение програмно-аппаратного комплекса в режиме работы с реальным сигналом также подтвердило совпадение с результатами исследований обобщенной модели. Некоторая разница объясняется не функционированием программной части системы (собственно ЦСФС), а неидентичностью квадратурных каналов входного цифро-аналогового преобразователя.
6. Выработаны рекомендации по управлению состоянием системы с целью расширения полосы захвата. Для импульсных и цифровых систем с ограничивающим фильтром они заключаются в предустановке начального состояния интегратора в насыщение, знак которого зависит от знака начальной расстройки. Для цифровых систем с пилообразным фильтром - в предустановке знака начальной разности фаз в зависимости от знака частотной расстройки.



