Совершенствование экспрессных методов индикации микобактерий туберкулеза
|
ВВЕДЕНИЕ 7 ГЛАВА 1. Анализ эпидемиологической обстановки по туберкулёзу и современного состояния экспресс-диагностики его возбудителя (обзор литературы) 14
1.1. Эпидемиологическая обстановка по туберкулезу в России. 14
1.2. Анализ современного состояния конструирования диагностических препаратов и индикации возбудителя туберкулеза. 22
1.3. Носители иммобилизованных систем твёрдофазного иммуноанализа 39
СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ
ГЛАВА 2. Материалы и методы 48
2.1. Штаммы микроорганизмов, взятые в работу 48
2.2. Питательные среды, условия культивирования микроорганизмов 48
2.3. Объекты исследования 54
2.4. Получение антигенных комплексов микроорганизмов 54
2.5. Лабораторные животные, использованные в экспериментах 54
2.6. Методы иммунизации животных 55
2.7. Методы контроля антигенов и сывороток 55
2.8. Выделение иммуноглобулинов 55
2.9. Получение и контроль иммунофлуоресцирующих конъюгатов 56
2.10. Получение и контроль липосом 56
2.11. Получение и контроль иммуноферментных конъюгатов 56
2.12. Физико-химические методы
56
2.13. Иммунохимические методы анализа 57
2.14. Лиофилизация биологического материала 57
2.15. Характеристика реагентов, используемых для получения магноиммуносорбентов
2.16. Методы математической и статистической обработки материалов 58
ГЛАВА 3. Получение высокоактивного специфического биологического сырья (антигенов и антител) для конструирования диагностических препаратов 59
03.1. Получение антигенных комплексов микобактерий туберкулёза 59
03.2. Получение специфической туберкулёзной сыворотки 64
ГЛАВА 4. Получение иммуноферментных препаратов для
экспресс-диагностики туберкулёза 76
4.1. Получение иммунопероксидазного конъюгата 76
4.2. Получение липосом и липосомально-иммунопероксидазного
конъюгата
ГЛАВА 5. Получение туберкулёзных суспензионных диагностикумов
5.1. Биотехнология изготовления латексного диагностикума 91
5.2. Разработка биотехнологии получения алюмосиликатного диагностикума 94
ГЛАВА 6. Конструирование магнитоуправляемых иммуносорбентов для экспресс-диагностики микобактерий туберкулёза
6.1. Разработка метода селективного концентрирования возбудителя туберкулёза на магноиммуносорбенте с последующей постановкой иммуноферментного анализа. 100
6.2. Разработка метода селективного концентрирования возбудителя туберкулёза на магноиммуносорбенте с последующей постановкой количественного иммунофлуоресцентного анализа
ГЛАВА 7. Изучение диагностической ценности разработанных диагностикумов и тест-систем для выявления антигена
возбудителя туберкулеза
ЗАКЛЮЧЕНИЕ 118
ВЫВОДЫ 128
ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ 148
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 149
ПРИЛОЖЕНИЯ 151
1.1. Эпидемиологическая обстановка по туберкулезу в России. 14
1.2. Анализ современного состояния конструирования диагностических препаратов и индикации возбудителя туберкулеза. 22
1.3. Носители иммобилизованных систем твёрдофазного иммуноанализа 39
СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ
ГЛАВА 2. Материалы и методы 48
2.1. Штаммы микроорганизмов, взятые в работу 48
2.2. Питательные среды, условия культивирования микроорганизмов 48
2.3. Объекты исследования 54
2.4. Получение антигенных комплексов микроорганизмов 54
2.5. Лабораторные животные, использованные в экспериментах 54
2.6. Методы иммунизации животных 55
2.7. Методы контроля антигенов и сывороток 55
2.8. Выделение иммуноглобулинов 55
2.9. Получение и контроль иммунофлуоресцирующих конъюгатов 56
2.10. Получение и контроль липосом 56
2.11. Получение и контроль иммуноферментных конъюгатов 56
2.12. Физико-химические методы
56
2.13. Иммунохимические методы анализа 57
2.14. Лиофилизация биологического материала 57
2.15. Характеристика реагентов, используемых для получения магноиммуносорбентов
2.16. Методы математической и статистической обработки материалов 58
ГЛАВА 3. Получение высокоактивного специфического биологического сырья (антигенов и антител) для конструирования диагностических препаратов 59
03.1. Получение антигенных комплексов микобактерий туберкулёза 59
03.2. Получение специфической туберкулёзной сыворотки 64
ГЛАВА 4. Получение иммуноферментных препаратов для
экспресс-диагностики туберкулёза 76
4.1. Получение иммунопероксидазного конъюгата 76
4.2. Получение липосом и липосомально-иммунопероксидазного
конъюгата
ГЛАВА 5. Получение туберкулёзных суспензионных диагностикумов
5.1. Биотехнология изготовления латексного диагностикума 91
5.2. Разработка биотехнологии получения алюмосиликатного диагностикума 94
ГЛАВА 6. Конструирование магнитоуправляемых иммуносорбентов для экспресс-диагностики микобактерий туберкулёза
6.1. Разработка метода селективного концентрирования возбудителя туберкулёза на магноиммуносорбенте с последующей постановкой иммуноферментного анализа. 100
6.2. Разработка метода селективного концентрирования возбудителя туберкулёза на магноиммуносорбенте с последующей постановкой количественного иммунофлуоресцентного анализа
ГЛАВА 7. Изучение диагностической ценности разработанных диагностикумов и тест-систем для выявления антигена
возбудителя туберкулеза
ЗАКЛЮЧЕНИЕ 118
ВЫВОДЫ 128
ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ 148
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 149
ПРИЛОЖЕНИЯ 151
Анализ сложившейся эпидемиологической ситуации показывает, что заболеваемость туберкулёзом в нашей стране носит характер эпидемии (Онищенко Г.Г., 2002; Пунга В.В., Капков Л.П., 1999). По данным Всемирной Организации Здравоохранения (ВОЗ) в промежутке времени с 2000 по 2020 гг. туберкулёзом в мире заболеют около 200 млн. человек, умрут около 35 млн. человек, будут инфицированы приблизительно 1 млрд. человек (WHO Fact Sheet, 2000). В связи с этим, одной из важных задач мировой медицины является разработка надёжных (активных и специфических), простых в использовании и дешёвых средств для быстрого выявления возбудителя в исследуемом материале.
В нашей стране при диагностике туберкулёза большое внимание уделяется культуральным методам, за рубежом - микроскопии мазка. Но оба эти метода имеют существенные недостатки. Культивирование с момента посева составляет три месяца, причём положительных результатов- 0,5-14 % (Кли¬менко М.Т. с соавт, 1985; Клименко М.Т. с соавт., 1987; Литвинов В.И., 1996). При микроскопии мазка (флуоресцентной) наблюдается до 14 % положительных результатов (Канюк А.Н., 1995). Таким образом, данные методы не могут претендовать на роль основных в лабораторной диагностике туберкулёза. Известны способы диагностики туберкулёза с помощью эритроцитарных диагностикумов (Архангельский Н.И. с соавт., 1985), реакции агрегатагглютинации (Хоменко А.Г. с соавт,1992), реакции агглютинации латекса, масс-спектроскопии (Маякова Т.И. с соавт., 1995), но данные методы трудоёмки и малоактивны. Существуют препараты для ПЦР-диагностики, но они отличаются значительной дороговизной и сложностью исполнения и поэтому распространения ещё не получили. В связи с этим, актуальным является разработка диагностических препаратов и методов исследований, обладающих высокой специфической активностью, экспрессностью и информативностью.
ЦЕЛЬ И ОСНОВНЫЕ ЗАДАЧИ ИССЛЕДОВАНИЯ Цель исследования:
совершенствование биотехнологий иммунобиологических препаратов для экспресс-диагностики микобактерий туберкулёза.
Основные задачи исследования:
- отработать методические подходы по извлечению полноценных антигенных комплексов из микробных биомасс возбудителя туберкулёза и получить высокоактивные иммунные туберкулёзные сыворотки;
- разработать магнитные сорбенты с фиксированными на их поверхности антигенами гетерологичных штаммов для удаления из туберкулёзных иммунных сывороток неспецифических антител;
- отработать биотехнологию изготовления высокочувствительных и стабильных туберкулёзных липосомально-иммунопероксидазных конъюгатов;
- разработать эффективные способы получения суспензионных диагностикумов на основе полиакролеиновой (латексной) и алюмосиликатной матриц для реакций агглютинации;
- отработать биотехнологию аффинных сорбентов с магнитными свойствами для диагностики туберкулёза в экспрессных методах (иммуноферментном анализе - ИФА, количественном иммунофлуоресцентном анализе - КИФА);
- определить диагностическую ценность применения разработанных иммунобиологических препаратов на экспериментальном и клиническом материале.
Научная новизна работы.
Полученные в результате исследований данные представляют интерес с точки зрения поиска путей извлечения полноценных специфических водорастворимых антигенных комплексов из микобактерий туберкулёза.
В нашей стране при диагностике туберкулёза большое внимание уделяется культуральным методам, за рубежом - микроскопии мазка. Но оба эти метода имеют существенные недостатки. Культивирование с момента посева составляет три месяца, причём положительных результатов- 0,5-14 % (Кли¬менко М.Т. с соавт, 1985; Клименко М.Т. с соавт., 1987; Литвинов В.И., 1996). При микроскопии мазка (флуоресцентной) наблюдается до 14 % положительных результатов (Канюк А.Н., 1995). Таким образом, данные методы не могут претендовать на роль основных в лабораторной диагностике туберкулёза. Известны способы диагностики туберкулёза с помощью эритроцитарных диагностикумов (Архангельский Н.И. с соавт., 1985), реакции агрегатагглютинации (Хоменко А.Г. с соавт,1992), реакции агглютинации латекса, масс-спектроскопии (Маякова Т.И. с соавт., 1995), но данные методы трудоёмки и малоактивны. Существуют препараты для ПЦР-диагностики, но они отличаются значительной дороговизной и сложностью исполнения и поэтому распространения ещё не получили. В связи с этим, актуальным является разработка диагностических препаратов и методов исследований, обладающих высокой специфической активностью, экспрессностью и информативностью.
ЦЕЛЬ И ОСНОВНЫЕ ЗАДАЧИ ИССЛЕДОВАНИЯ Цель исследования:
совершенствование биотехнологий иммунобиологических препаратов для экспресс-диагностики микобактерий туберкулёза.
Основные задачи исследования:
- отработать методические подходы по извлечению полноценных антигенных комплексов из микробных биомасс возбудителя туберкулёза и получить высокоактивные иммунные туберкулёзные сыворотки;
- разработать магнитные сорбенты с фиксированными на их поверхности антигенами гетерологичных штаммов для удаления из туберкулёзных иммунных сывороток неспецифических антител;
- отработать биотехнологию изготовления высокочувствительных и стабильных туберкулёзных липосомально-иммунопероксидазных конъюгатов;
- разработать эффективные способы получения суспензионных диагностикумов на основе полиакролеиновой (латексной) и алюмосиликатной матриц для реакций агглютинации;
- отработать биотехнологию аффинных сорбентов с магнитными свойствами для диагностики туберкулёза в экспрессных методах (иммуноферментном анализе - ИФА, количественном иммунофлуоресцентном анализе - КИФА);
- определить диагностическую ценность применения разработанных иммунобиологических препаратов на экспериментальном и клиническом материале.
Научная новизна работы.
Полученные в результате исследований данные представляют интерес с точки зрения поиска путей извлечения полноценных специфических водорастворимых антигенных комплексов из микобактерий туберкулёза.
1. Сочетанное использование водно-солевой экстракции, механической и ультразвуковой дезинтеграции позволило выделять из обеззараженных ацетоном микобактерий туберкулёза полноценные антигенные комплексы с серологической активностью 1:32-1:64 в реакции иммунодиффузии с туберкулёзной сывороткой. Данная биотехнология оказалась пригодной для изолирования антигенов из близкородственных возбудителю туберкулёза в серологическом отношении микроорганизмов.
2. При получении высокоактивных туберкулёзных иммунных сывороток для иммунизации кроликов применяли выделенные антигенные комплексы с иммуномодуляторами феракрилом, тималином и циклофосфаном. Специфическая активность полученных сывороток в непрямой реакции иммунофлуоресценции достигала 1:400 -1:600, а в реакции иммунодиффузии -1:32-1:64.
3. Удаление из туберкулёзных иммунных сывороток перекрёстно реагирующих антител с помощью магнитных сорбентов с ковалентно фиксированными на их поверхности антигенами гетерологичных штаммов обеспечило получение сырья, пригодного для конструирования различных диагностических препаратов.
4. Разработанная биотехнология изготовления липосомальных туберкулёзных иммунопероксидазных конъюгатов обеспечила получение высокочувствительного, специфического диагностикума, отличающегося повышенной стабильностью при хранении по сравнению с традиционным иммунопероксидазным конъюгатом.
5. Впервые осуществлена научная разработка биотехнологии производства серии высокоспецифических диагностических препаратов и иммобилизованных систем для выявления возбудителя туберкулёза и его антигенов
149
в искусственно контаминированных пробах и в клиническом материале от больных (моча, мокрота).
6. Чувствительность разработанного туберкулёзного латексного диагностикума в реакции агглютинации латекса (РАЛ) составила 3,9х10 5-7,8х105 м.к./мл, а алюмосиликатного туберкулёзного диагностикума в реакции суспензионной агглютинации (РСА) на стекле- 7,8х105-1,56х106 при учёте результатов РАЛ через 16-18 ч, а РСА - через 1-3 мин. В клиническом материале (моча, мокрота) у больных туберкулёзом специфические антигены микобактерий выявлены в РАЛ в 66 % случаев, в РСА- в 65 %.
7. Туберкулёзные магнитные иммуносорбенты, полученные по разработанной биотехнологии, способны селективно концентрировать на своей поверхности микобактерии туберкулёза, его антигены из исследуемых проб большого объёма, включая клинический материал от больных туберкулёзом, и выступать в качестве твёрдой фазы при осуществлении иммуноферментного и количественного иммунофлуоресцентного анализов, обеспечивающих с высокой специфичностью выявление туберкулёзного микроба в течение 1-1,5 ч с чувствительностью 1х10 м.к./пробе.
8. В клиническом материале (моча, мокрота) у больных различными формами туберкулёза специфические антигены микобактерий при использовании туберкулёзных магнитных иммуносорбентов в сочетании с иммуноферментным и количественным иммунофлуоресцентным методами выявлены в 91 %, что подчёркивает высокую диагностическую ценность разработанных препаратов.
2. При получении высокоактивных туберкулёзных иммунных сывороток для иммунизации кроликов применяли выделенные антигенные комплексы с иммуномодуляторами феракрилом, тималином и циклофосфаном. Специфическая активность полученных сывороток в непрямой реакции иммунофлуоресценции достигала 1:400 -1:600, а в реакции иммунодиффузии -1:32-1:64.
3. Удаление из туберкулёзных иммунных сывороток перекрёстно реагирующих антител с помощью магнитных сорбентов с ковалентно фиксированными на их поверхности антигенами гетерологичных штаммов обеспечило получение сырья, пригодного для конструирования различных диагностических препаратов.
4. Разработанная биотехнология изготовления липосомальных туберкулёзных иммунопероксидазных конъюгатов обеспечила получение высокочувствительного, специфического диагностикума, отличающегося повышенной стабильностью при хранении по сравнению с традиционным иммунопероксидазным конъюгатом.
5. Впервые осуществлена научная разработка биотехнологии производства серии высокоспецифических диагностических препаратов и иммобилизованных систем для выявления возбудителя туберкулёза и его антигенов
149
в искусственно контаминированных пробах и в клиническом материале от больных (моча, мокрота).
6. Чувствительность разработанного туберкулёзного латексного диагностикума в реакции агглютинации латекса (РАЛ) составила 3,9х10 5-7,8х105 м.к./мл, а алюмосиликатного туберкулёзного диагностикума в реакции суспензионной агглютинации (РСА) на стекле- 7,8х105-1,56х106 при учёте результатов РАЛ через 16-18 ч, а РСА - через 1-3 мин. В клиническом материале (моча, мокрота) у больных туберкулёзом специфические антигены микобактерий выявлены в РАЛ в 66 % случаев, в РСА- в 65 %.
7. Туберкулёзные магнитные иммуносорбенты, полученные по разработанной биотехнологии, способны селективно концентрировать на своей поверхности микобактерии туберкулёза, его антигены из исследуемых проб большого объёма, включая клинический материал от больных туберкулёзом, и выступать в качестве твёрдой фазы при осуществлении иммуноферментного и количественного иммунофлуоресцентного анализов, обеспечивающих с высокой специфичностью выявление туберкулёзного микроба в течение 1-1,5 ч с чувствительностью 1х10 м.к./пробе.
8. В клиническом материале (моча, мокрота) у больных различными формами туберкулёза специфические антигены микобактерий при использовании туберкулёзных магнитных иммуносорбентов в сочетании с иммуноферментным и количественным иммунофлуоресцентным методами выявлены в 91 %, что подчёркивает высокую диагностическую ценность разработанных препаратов.



