Разработка методов синтеза фторидов металлов IV группы с помощью гидродифторида аммония
|
Введение 4
Глава 1. Литературный обзор
1.1. Свойства фторидов Ti, Zr и Hf 6
1.2. Свойства фторидов Sn и РЬ 13
1.2.1. Олово (II) в составе аниона 21
1.2.2. Олово (И) в составе катиона 25
1.3. Свойства фторида и гидродифторида аммония 27
Глава 2. Методическая часть
2.1. Характеристика исходных веществ и реактивов, использованных в ф, работе 36
2.2. Аналитические методы 41
2.3. Методы исследования 43
Глава 3. Разработка методов синтеза фторидов переходных металлов
3.1. Термодинамические характеристики реакций Ti, Ti02, Zr, Zr02, Hf, Hf02, Sc, Sc203 с HF и NH4HF2...., 43
3.2. Фторирование титана 45
3.3. Фторирование циркония и гафния 50
3.4. Извлечение гафния из металлургических отходов 51
3.5. Получение ScF3 55
Глава 4. Разработка методов синтеза SnF2
4.1. Исследование фторирования Sn и РЬ 64
4.2. Изучение термического разложения NH4S11F3 69
4.3. Изучение свойств SnCl2 и его фторирования 70
4.4. Исследование свойств SnO и его фторирования 74
4.5 Термическое разложение NH4S11F3 в присутствии Sn 78
3
Глава 5. Исследование свойсгв SnF2
5.1. Определение энталытии образования SnF2 81
5.2. Расчет равновесия реакций фторирования 83
5.3. Расчет вероятности реакций SnF2c простыми веществами,
оксидами и хлоридами 88
5.4. Изучение реакций SnF2 92
Выводы 110
Приложение 113
Литература 118
Глава 1. Литературный обзор
1.1. Свойства фторидов Ti, Zr и Hf 6
1.2. Свойства фторидов Sn и РЬ 13
1.2.1. Олово (II) в составе аниона 21
1.2.2. Олово (И) в составе катиона 25
1.3. Свойства фторида и гидродифторида аммония 27
Глава 2. Методическая часть
2.1. Характеристика исходных веществ и реактивов, использованных в ф, работе 36
2.2. Аналитические методы 41
2.3. Методы исследования 43
Глава 3. Разработка методов синтеза фторидов переходных металлов
3.1. Термодинамические характеристики реакций Ti, Ti02, Zr, Zr02, Hf, Hf02, Sc, Sc203 с HF и NH4HF2...., 43
3.2. Фторирование титана 45
3.3. Фторирование циркония и гафния 50
3.4. Извлечение гафния из металлургических отходов 51
3.5. Получение ScF3 55
Глава 4. Разработка методов синтеза SnF2
4.1. Исследование фторирования Sn и РЬ 64
4.2. Изучение термического разложения NH4S11F3 69
4.3. Изучение свойств SnCl2 и его фторирования 70
4.4. Исследование свойств SnO и его фторирования 74
4.5 Термическое разложение NH4S11F3 в присутствии Sn 78
3
Глава 5. Исследование свойсгв SnF2
5.1. Определение энталытии образования SnF2 81
5.2. Расчет равновесия реакций фторирования 83
5.3. Расчет вероятности реакций SnF2c простыми веществами,
оксидами и хлоридами 88
5.4. Изучение реакций SnF2 92
Выводы 110
Приложение 113
Литература 118
Фториды переходных металлов TV группы Периодической системы интересны как в •практическом, многие из них - промежуточные и еще с та получении металлов, компоненты различных материалов. В научном отношении большое значение имеют многочисленные комплексные фториды, образуемые переходными металлами в различных степенях окисления. По этим причинам методы синтеза фторидов переходных металлов продолжают занимать определенное место в работах последних лет.
Развитие процессов фторирования идет по пути совершенствования реакций с участием фтора, фтористого водорода и фтористоводородной кислоты, применения разнообразных методов физической активации реакций фтора и газообразных фторидов. Однако в заводской практике сравнительно малое внимание уделяется таким в общем уже традиционным фторирующим реагентам, как гидродифгорид аммония.
Гидродифгоряд аммония отличается тем, что в обычных условиях представляет собой твердое вещество, плавящееся при низкой температуре и обладающее довольно высокой реакционной способностьк, которая может превосходить свойственную безводному фтористому водороду и фтористоводородной кислоте.
Довольно широко исследована реакции гадроднфторнда аммония с оксидами, сложными оксидами, металланами, некоторыми минералами, с оксидными рудами и концентратами. Сравнительно интенсивно проводятся разработки фторндной технологии переработки ильменнтовых и цирконовых концентратов. В меньшей степени изучены реакции гндроаифюрида аммония с хлоридами металлов и почти совсем не изучены процессы взаимодействия с простыми веществами. До нашей работы не были исследованы, в частности, реакции гидродифторида аммония с металлами IV группы Периодической системы - титаном,* цирконием и гафнием, а также с представителями непереходных элементов той же группы - оловом и свинцом.
Реакции гидродифторида аммония с металлами IV группы могут быть вполне вероятны и использованы для получения фторидов. Фторирование металлов может представлять и практический интерес, например, для регенерации этих металлов из различных отходов.
Среди фторидов дифгорид олова занимает особое место. Уникальность этого соединения проявляется в его широком интервале жидкофазного существования, что позволяет предположить, что он сам может являться фторирующим реагентом или средой для фторирования. В литературе до настоящей работы отсутствовали надежные сведения о величине энтальпии образования дифторида олова без которой невозможен расчет термодинамических характеристик реакций с участием SnF2. Более того., свойства самого дифторида олова как реагента, его поведение при фторировании металлического олова и при .взаимодействии с другими веществами оказались недостаточно освещенными.
Все что и определило основную пель настоящей работы - изучить реакции гидродифторида аммония с металлами IV группы, разработать на их основе новые методы синтеза фторидов металлов и использовать изученные реакции для решения некоторых практических задач.
Вместе с тем в работе решались и отдельные задачи более узкого плана. В частности, разработан метод производства трифторида скандия из его оксида и гидродифторида аммония, изучены свойства дифторида олова, рассмотрены реакции дифторида олова с металлами III и V групп и их фторидами, и показано, что дифторид олова может являться окислителем и использоваться для синтеза некоторых фторидов. Все они тесно связаны с достижением основной цели исследования и одновременно имели практическую направленность.
Развитие процессов фторирования идет по пути совершенствования реакций с участием фтора, фтористого водорода и фтористоводородной кислоты, применения разнообразных методов физической активации реакций фтора и газообразных фторидов. Однако в заводской практике сравнительно малое внимание уделяется таким в общем уже традиционным фторирующим реагентам, как гидродифгорид аммония.
Гидродифгоряд аммония отличается тем, что в обычных условиях представляет собой твердое вещество, плавящееся при низкой температуре и обладающее довольно высокой реакционной способностьк, которая может превосходить свойственную безводному фтористому водороду и фтористоводородной кислоте.
Довольно широко исследована реакции гадроднфторнда аммония с оксидами, сложными оксидами, металланами, некоторыми минералами, с оксидными рудами и концентратами. Сравнительно интенсивно проводятся разработки фторндной технологии переработки ильменнтовых и цирконовых концентратов. В меньшей степени изучены реакции гндроаифюрида аммония с хлоридами металлов и почти совсем не изучены процессы взаимодействия с простыми веществами. До нашей работы не были исследованы, в частности, реакции гидродифторида аммония с металлами IV группы Периодической системы - титаном,* цирконием и гафнием, а также с представителями непереходных элементов той же группы - оловом и свинцом.
Реакции гидродифторида аммония с металлами IV группы могут быть вполне вероятны и использованы для получения фторидов. Фторирование металлов может представлять и практический интерес, например, для регенерации этих металлов из различных отходов.
Среди фторидов дифгорид олова занимает особое место. Уникальность этого соединения проявляется в его широком интервале жидкофазного существования, что позволяет предположить, что он сам может являться фторирующим реагентом или средой для фторирования. В литературе до настоящей работы отсутствовали надежные сведения о величине энтальпии образования дифторида олова без которой невозможен расчет термодинамических характеристик реакций с участием SnF2. Более того., свойства самого дифторида олова как реагента, его поведение при фторировании металлического олова и при .взаимодействии с другими веществами оказались недостаточно освещенными.
Все что и определило основную пель настоящей работы - изучить реакции гидродифторида аммония с металлами IV группы, разработать на их основе новые методы синтеза фторидов металлов и использовать изученные реакции для решения некоторых практических задач.
Вместе с тем в работе решались и отдельные задачи более узкого плана. В частности, разработан метод производства трифторида скандия из его оксида и гидродифторида аммония, изучены свойства дифторида олова, рассмотрены реакции дифторида олова с металлами III и V групп и их фторидами, и показано, что дифторид олова может являться окислителем и использоваться для синтеза некоторых фторидов. Все они тесно связаны с достижением основной цели исследования и одновременно имели практическую направленность.
1. Впервые проведено систематическое исследование взаимодействия металлов IV группы Периодической системы с гидродифторидом аммония и показано, что титан, цирконий, гафний и олово относительно легко подвергаются фторированию, причем олово образует фторометаллаты аммония в состоянии окисления 2+, титан - 3+, цирконий и гафний - 4+. Свинец не взаимодействует с гидродифторидом аммония.
2. Изучено взаимодействие стружки и порошка титана с гидродифторидом аммония и показано, что в условиях стесненного выхода газообразных продуктов - из реакционной зоны при 300 °С образуются фторотитанаты(Ш) аммония, которые при атмосферном давлении и 150 °С разлагаются до NELjTil^ и далее до TiF3.
3. Исследовано взаимодействие металлического циркония с гидродифторидом аммония и установлено, что реакция при атмосферном давлении и 100 °С протекает с образованием фтороцирконатов(1У) аммония. Предложено использовать эту реакцию для регенерации циркония из металлургических отходов.
4. Исследовано взаимодействие сплава гафния (90-92 мае. %), железа (6-7 мае. %) и кальция (2-3 мае. %) с гидродифторидом аммония, установлено, что при атмосферном давлении и 150-180 °С образуются гептафторогафнат(1У) аммония и гексафтороферрат(Ш) железа. Изучено выщелачивание продуктов фторирования водой и показано, что при оптимальных условиях извлечения гафния в раствор достигает 94-96 %. Двухстадийная изогидрическая кристаллизация позволяет снизить концентрацию железа в соли гафния до 2" 10'3 %.
5. Исследовано взаимодействие гидродифторида аммония с оловом и для сопоставления - с дихлоридом и оксидом олова, изучен процесс термического разложения трифторостанната олова(П) и показано, что дифторид олова может быть получен непосредственно из металла, причем этот путь связан с меньшим общим числом операций и большим выходом
продукта, чем традиционный способ. Предложен новый двухстадийный метод синтеза дифгорида олова, включающий стадии получения грифюроаанната олова(П) и термического разложения смеси трифторостанната с оловом. Метод позволяет достигать высоких выходов по олову и по фтору.
6. Калориметрическим методом определена стандартная энтальпия образования кристаллического дифторида олова, составляющая - 696.1± 1.2 кДж/моль, вычислена энергия Гиббса образования дифторида олова, рассчитаны термодинамические характеристики реакций дифторида олова с простыми веществами и оксидами некоторых металлов. Показано, что дифторид олова может выступать окислителем и использоваться для синтеза высших фторидов переходных металлов III - V групп Периодической системы, в том числе фторидов, которые ранее получали только с использованием элементного фтора (TiF4, NbF3, TaF3). Экспериментально исследованы реакции с алюминием, кремнием, свинцом, ти1аном, цирконием, ванадием, ниобием, танталом и хромом и показано, что с относительно высоким выходом фторируются кремний, титан, цирконий, ванадий и ниобий, а продуктами их фторирования являются SiF4, TiF4, ZrF4, VF3HNbFs.
7. Изучена растворимость в системе SnF2-NIL,F-H20, найдены концентрационные границы образования NII4SnF3 и NH4Sn2F5.
8. Полученные в работе новые данные были использованы для разработки методов производства трифторида скандия. Показано, что гидродифторид аммония не взаимодействует с металлическим скандием, но легко фторирует оксид скандия. Разработаны и проверены два метода получения чистого скандия из оксида скандия - с использованием гидродифторида аммония и с применением фтористоводороной кислоты. Найдено, что первый из них трудно реализовать в больших масштабах, а очистка от примесей металлов протекает лишь в случае использования фтористоводородной кислоты. Показано, что применение обработки в токе
фтора позволяет получать продукт с низким содержанием кислорода. Испытано несколько составов растворов для отмывки трифторида скандия or
иримесгй и установлено, что отмывка фгорисюкодородной кислотой квалификации ос.ч. весьма эффективна.
2. Изучено взаимодействие стружки и порошка титана с гидродифторидом аммония и показано, что в условиях стесненного выхода газообразных продуктов - из реакционной зоны при 300 °С образуются фторотитанаты(Ш) аммония, которые при атмосферном давлении и 150 °С разлагаются до NELjTil^ и далее до TiF3.
3. Исследовано взаимодействие металлического циркония с гидродифторидом аммония и установлено, что реакция при атмосферном давлении и 100 °С протекает с образованием фтороцирконатов(1У) аммония. Предложено использовать эту реакцию для регенерации циркония из металлургических отходов.
4. Исследовано взаимодействие сплава гафния (90-92 мае. %), железа (6-7 мае. %) и кальция (2-3 мае. %) с гидродифторидом аммония, установлено, что при атмосферном давлении и 150-180 °С образуются гептафторогафнат(1У) аммония и гексафтороферрат(Ш) железа. Изучено выщелачивание продуктов фторирования водой и показано, что при оптимальных условиях извлечения гафния в раствор достигает 94-96 %. Двухстадийная изогидрическая кристаллизация позволяет снизить концентрацию железа в соли гафния до 2" 10'3 %.
5. Исследовано взаимодействие гидродифторида аммония с оловом и для сопоставления - с дихлоридом и оксидом олова, изучен процесс термического разложения трифторостанната олова(П) и показано, что дифторид олова может быть получен непосредственно из металла, причем этот путь связан с меньшим общим числом операций и большим выходом
продукта, чем традиционный способ. Предложен новый двухстадийный метод синтеза дифгорида олова, включающий стадии получения грифюроаанната олова(П) и термического разложения смеси трифторостанната с оловом. Метод позволяет достигать высоких выходов по олову и по фтору.
6. Калориметрическим методом определена стандартная энтальпия образования кристаллического дифторида олова, составляющая - 696.1± 1.2 кДж/моль, вычислена энергия Гиббса образования дифторида олова, рассчитаны термодинамические характеристики реакций дифторида олова с простыми веществами и оксидами некоторых металлов. Показано, что дифторид олова может выступать окислителем и использоваться для синтеза высших фторидов переходных металлов III - V групп Периодической системы, в том числе фторидов, которые ранее получали только с использованием элементного фтора (TiF4, NbF3, TaF3). Экспериментально исследованы реакции с алюминием, кремнием, свинцом, ти1аном, цирконием, ванадием, ниобием, танталом и хромом и показано, что с относительно высоким выходом фторируются кремний, титан, цирконий, ванадий и ниобий, а продуктами их фторирования являются SiF4, TiF4, ZrF4, VF3HNbFs.
7. Изучена растворимость в системе SnF2-NIL,F-H20, найдены концентрационные границы образования NII4SnF3 и NH4Sn2F5.
8. Полученные в работе новые данные были использованы для разработки методов производства трифторида скандия. Показано, что гидродифторид аммония не взаимодействует с металлическим скандием, но легко фторирует оксид скандия. Разработаны и проверены два метода получения чистого скандия из оксида скандия - с использованием гидродифторида аммония и с применением фтористоводороной кислоты. Найдено, что первый из них трудно реализовать в больших масштабах, а очистка от примесей металлов протекает лишь в случае использования фтористоводородной кислоты. Показано, что применение обработки в токе
фтора позволяет получать продукт с низким содержанием кислорода. Испытано несколько составов растворов для отмывки трифторида скандия or
иримесгй и установлено, что отмывка фгорисюкодородной кислотой квалификации ос.ч. весьма эффективна.



