Электроснабжение абразивного завода
|
ВВЕДЕНИЕ
Характеристика производства 6
Технический паспорт 7
СРАВНЕНИЕ ОТЕЧЕСТВЕННЫХ И ЗАРУБЕЖНЫХ ТЕХНОЛОГИЙ И РЕШЕНИЙ 9
1 РАСЧЕТ ЭЛЕКТРИЧЕСКИХ НАГРУЗОК
1.1 Расчёт нагрузок по ремонтно-механическому цеху 11
1.2 Расчёт электрических нагрузок по предприятию 15
1.3 Расчёт картограммы электрических нагрузок 18
2 ВЫБОР ТРАНСФОРМАТОРОВ ЦЕХОВЫХ ТРАНСФОРМАТОРНЫХ ПОДСТАНЦИЙ
2.1 Выбор типа цеховых трансформаторов 23
2.2 Выбор цеховых трансформаторных подстанций 23
3 ВЫБОР НАПРЯЖЕНИЯ И ТРАНСФОРМАТОРОВ ГПП
ПРЕДПРИЯТИЯ 29
4 РАСЧЕТ СХЕМЫ ВНЕШНЕГО ЭЛЕКТРОСНАБЖЕНИЯ 33
4.1 Определение потерь мощности в силовых трансформаторах
ГПП 34
4.2 Расчет ЛЭП от подстанции энергосистемы до подстанции
предприятия 34
4.3 Расчет токов короткого замыкания 35
4.4 Выбор коммутационной и измерительной аппаратуры 36
5 ВЫБОР ВЕЛИЧИНЫ НАПРЯЖЕНИЯ И СХЕМЫ ВНУТРЕННЕГО ЭЛЕКТРОСНАБЖЕНИЯ ПРЕДПРИЯТИЯ. РАСЧЕТ ПИТАЮЩИХ ЛИНИЙ
5.1 Выбор напряжения схемы внутреннего электроснабжения 41
5.2 Выбор кабельных линий 42
6 РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ 45
7 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ СХЕМЫ
ВНУТРЕННЕГО ЭЛЕКТРОСНАБЖЕНИЯ 53
7.1 Выбор трансформаторов цеховых ТП 54
7.2 Определение потерь электроэнергии в трансформаторах ТП 55
7.3 Расчет потерь электроэнергии в кабельных линиях 56
7.4 Выбор комплектного электрооборудования 57
7.5 Определение технико-экономических показателей 58
7.6 Выбор оптимального варианта 60
8 ВЫБОР ЭЛЕКТРООБОРУДОВАНИЯ СХЕМЫ ВНУТРЕННЕГО ЭЛЕКТРОСНАБЖЕНИЯ
8.1 Выбор ячеек комплектного распределительного устройства ГПП .. 62
8.2 Выбор выключателей КРУ 62
8.3 Выбор трансформаторов тока в ячейках КРУ 63
8.4 Выбор трансформаторов напряжения
8.5 Выбор ячеек, устанавливаемых на вводах цеховых ТП 67
8.6 Выбор соединения силового трансформатора ГПП с РУ НН ГПП .. 67
8.7 Проверка кабелей 10 кВ на термическую стойкость к токам
короткого замыкания 68
8.8 Выбор трансформаторов собственных нужд 69
8.9 Выбор вводных и секционных автоматических выключателей
РУНН ТП 70
8.10 Выбор кабельной и коммутационной аппаратуры для
электроприемников ремонтно-механического цеха 71
9 РАСЧЕТ И ВЫБОР УСТРОЙСТВ КОМПЕНСАЦИИ РЕАКТИВНОЙ
МОЩНОСТИ 76
10 РАСЧЕТ ПОКАЗАТЕЛЕЙ КАЧЕСТВА НАПРЯЖЕНИЯ В УЗЛАХ
СЭС 83
11 БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ
11.1 Планировка и конструктивная часть ГПП 86
11.2 Защитные средства, применяемые на ГПП 87
11.3 Устройства сигнализации и контроля изоляции 87
11.4 Охрана труда и безопасность при эксплуатации
электроустановок 89
11.5 Расчет заземления 89
12 ЗАЩИТА РЕЛЕЙНАЯ ТРАНСФОРМАТОРА ЭТЦНК-12500/10
12.1 Мгновенная токовая защита 96
12.2 Защита от перегруза 98
12.3 Защита от однофазных замыканий на землю 99
12.4 Защита от изменения давления масла в баке трансформатора 100
12.5 Защита перегрева 101
ЗАКЛЮЧЕНИЕ 102
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 103
Характеристика производства 6
Технический паспорт 7
СРАВНЕНИЕ ОТЕЧЕСТВЕННЫХ И ЗАРУБЕЖНЫХ ТЕХНОЛОГИЙ И РЕШЕНИЙ 9
1 РАСЧЕТ ЭЛЕКТРИЧЕСКИХ НАГРУЗОК
1.1 Расчёт нагрузок по ремонтно-механическому цеху 11
1.2 Расчёт электрических нагрузок по предприятию 15
1.3 Расчёт картограммы электрических нагрузок 18
2 ВЫБОР ТРАНСФОРМАТОРОВ ЦЕХОВЫХ ТРАНСФОРМАТОРНЫХ ПОДСТАНЦИЙ
2.1 Выбор типа цеховых трансформаторов 23
2.2 Выбор цеховых трансформаторных подстанций 23
3 ВЫБОР НАПРЯЖЕНИЯ И ТРАНСФОРМАТОРОВ ГПП
ПРЕДПРИЯТИЯ 29
4 РАСЧЕТ СХЕМЫ ВНЕШНЕГО ЭЛЕКТРОСНАБЖЕНИЯ 33
4.1 Определение потерь мощности в силовых трансформаторах
ГПП 34
4.2 Расчет ЛЭП от подстанции энергосистемы до подстанции
предприятия 34
4.3 Расчет токов короткого замыкания 35
4.4 Выбор коммутационной и измерительной аппаратуры 36
5 ВЫБОР ВЕЛИЧИНЫ НАПРЯЖЕНИЯ И СХЕМЫ ВНУТРЕННЕГО ЭЛЕКТРОСНАБЖЕНИЯ ПРЕДПРИЯТИЯ. РАСЧЕТ ПИТАЮЩИХ ЛИНИЙ
5.1 Выбор напряжения схемы внутреннего электроснабжения 41
5.2 Выбор кабельных линий 42
6 РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ 45
7 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ СХЕМЫ
ВНУТРЕННЕГО ЭЛЕКТРОСНАБЖЕНИЯ 53
7.1 Выбор трансформаторов цеховых ТП 54
7.2 Определение потерь электроэнергии в трансформаторах ТП 55
7.3 Расчет потерь электроэнергии в кабельных линиях 56
7.4 Выбор комплектного электрооборудования 57
7.5 Определение технико-экономических показателей 58
7.6 Выбор оптимального варианта 60
8 ВЫБОР ЭЛЕКТРООБОРУДОВАНИЯ СХЕМЫ ВНУТРЕННЕГО ЭЛЕКТРОСНАБЖЕНИЯ
8.1 Выбор ячеек комплектного распределительного устройства ГПП .. 62
8.2 Выбор выключателей КРУ 62
8.3 Выбор трансформаторов тока в ячейках КРУ 63
8.4 Выбор трансформаторов напряжения
8.5 Выбор ячеек, устанавливаемых на вводах цеховых ТП 67
8.6 Выбор соединения силового трансформатора ГПП с РУ НН ГПП .. 67
8.7 Проверка кабелей 10 кВ на термическую стойкость к токам
короткого замыкания 68
8.8 Выбор трансформаторов собственных нужд 69
8.9 Выбор вводных и секционных автоматических выключателей
РУНН ТП 70
8.10 Выбор кабельной и коммутационной аппаратуры для
электроприемников ремонтно-механического цеха 71
9 РАСЧЕТ И ВЫБОР УСТРОЙСТВ КОМПЕНСАЦИИ РЕАКТИВНОЙ
МОЩНОСТИ 76
10 РАСЧЕТ ПОКАЗАТЕЛЕЙ КАЧЕСТВА НАПРЯЖЕНИЯ В УЗЛАХ
СЭС 83
11 БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ
11.1 Планировка и конструктивная часть ГПП 86
11.2 Защитные средства, применяемые на ГПП 87
11.3 Устройства сигнализации и контроля изоляции 87
11.4 Охрана труда и безопасность при эксплуатации
электроустановок 89
11.5 Расчет заземления 89
12 ЗАЩИТА РЕЛЕЙНАЯ ТРАНСФОРМАТОРА ЭТЦНК-12500/10
12.1 Мгновенная токовая защита 96
12.2 Защита от перегруза 98
12.3 Защита от однофазных замыканий на землю 99
12.4 Защита от изменения давления масла в баке трансформатора 100
12.5 Защита перегрева 101
ЗАКЛЮЧЕНИЕ 102
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 103
Системой электроснабжения называют совокупность устройств, для производства, передачи и распределения электрической энергии.
Системы электроснабжения промышленных предприятий создаются для обеспечения питания электроэнергией промышленных приемников электрической энергией, к которым относятся электродвигатели разных машин и механизмов, электрические печи, аппараты и машины для электрической сварки, осветительные установки и другие промышленные приемники электроэнергии. Задача электроснабжения промышленных предприятий возникла одновременно с широким внедрением электропривода в качестве движущей силы различных машин, механизмов и строительством электрических станций.
Первые электрические станции сооружались в городах для освещения и питания электрического транспорта, а также при фабриках и заводах. Несколько позднее появилась возможность сооружения электрических станций в местах залежей топлива или в местах использования энергии воды, в известной степени независимо от мест нахождения потребителей электрической энергии - городов и промышленных предприятий. Передача электрической энергии к центрам потребления стала осуществляться линиями электропередачи высокого напряжения.
В настоящее время большинство потребителей получает электрическую энергию от энергосистем. По мере развития электропотребления усложняются и системы электроснабжения промышленных предприятий. В них включаются сети высоких напряжений, распределительные сети, а в ряде случаев и сети промышленных ТЭЦ. Возникает необходимость внедрять автоматизацию систем электроснабжения промышленных предприятий и производственных процессов, осуществлять в широких масштабах диспетчеризацию процессов производства с применением телесигнализации и телеуправления и вести огромную работу по экономии электрической энергии.
В настоящее время основной проблемой является создание рациональных систем электроснабжения промышленных предприятий. Созданию таких систем способствуют такие факторы, как: выбор и применение рациональных напряжений, правильный выбор места размещения цеховых и главных распределительных и понизительных подстанций, совершенствование методики определения электрических нагрузок и т.д.
Таким образом, оптимизация производственных процессов в сочетании с оптимизацией систем промышленного электроснабжения может и должна давать дополнительные средства за счет сокращения непроизводственных расходов
Технический паспорт проекта
1 Суммарная установленная мощность электроприемников предприятия напряжением ниже 1 кВ - 12747 кВт.
2 Суммарная установленная мощность электроприемников предприятия напряжением свыше 1 кВ - 55520 кВт.
Системы электроснабжения промышленных предприятий создаются для обеспечения питания электроэнергией промышленных приемников электрической энергией, к которым относятся электродвигатели разных машин и механизмов, электрические печи, аппараты и машины для электрической сварки, осветительные установки и другие промышленные приемники электроэнергии. Задача электроснабжения промышленных предприятий возникла одновременно с широким внедрением электропривода в качестве движущей силы различных машин, механизмов и строительством электрических станций.
Первые электрические станции сооружались в городах для освещения и питания электрического транспорта, а также при фабриках и заводах. Несколько позднее появилась возможность сооружения электрических станций в местах залежей топлива или в местах использования энергии воды, в известной степени независимо от мест нахождения потребителей электрической энергии - городов и промышленных предприятий. Передача электрической энергии к центрам потребления стала осуществляться линиями электропередачи высокого напряжения.
В настоящее время большинство потребителей получает электрическую энергию от энергосистем. По мере развития электропотребления усложняются и системы электроснабжения промышленных предприятий. В них включаются сети высоких напряжений, распределительные сети, а в ряде случаев и сети промышленных ТЭЦ. Возникает необходимость внедрять автоматизацию систем электроснабжения промышленных предприятий и производственных процессов, осуществлять в широких масштабах диспетчеризацию процессов производства с применением телесигнализации и телеуправления и вести огромную работу по экономии электрической энергии.
В настоящее время основной проблемой является создание рациональных систем электроснабжения промышленных предприятий. Созданию таких систем способствуют такие факторы, как: выбор и применение рациональных напряжений, правильный выбор места размещения цеховых и главных распределительных и понизительных подстанций, совершенствование методики определения электрических нагрузок и т.д.
Таким образом, оптимизация производственных процессов в сочетании с оптимизацией систем промышленного электроснабжения может и должна давать дополнительные средства за счет сокращения непроизводственных расходов
Технический паспорт проекта
1 Суммарная установленная мощность электроприемников предприятия напряжением ниже 1 кВ - 12747 кВт.
2 Суммарная установленная мощность электроприемников предприятия напряжением свыше 1 кВ - 55520 кВт.
В выпускной квалификационной работе выполнен расчет электрических нагрузок абразивного завода, согласно усовершенствованному методу упорядоченных диаграмм, который позволил разработать схемы внешнего и внутреннего электроснабжения.
Выбор рационального напряжения внешнего электроснабжения оценивался по формуле Стилла, расчет показал, что оптимальным напряжением для внешнего электроснабжения является 110 кВ.
Выбраны мощность, количество и место установки цеховых трансформаторов с современными трансформаторами типа ТМГ, обеспечивающими минимальные затраты при эксплуатации, малые габариты ТП и высокую надежность работы подстанций.
Распределение электрической энергии внутри предприятия осуществляется на напряжении 10 кВ по смешанной схеме, обеспечивающей оптимальные режимы работы электрической сети, надлежащее качество электроэнергии и надежность. Учитывая климатические условия, характеристики грунта и плотность застройки было принято решение прокладывать кабельные линии преимущественно в траншеях. В качестве проводника использовались кабели с изоляцией из сшитого полиэтилена марки АПвП-10 сечением 70, 120, 150, 240 мм .
В проекте уделено внимание вопросу компенсации реактивной мощности. Это объясняется низким значением средневзвешенного коэффициента мощности на предприятии, высокой стоимостью электроэнергии и значительным потреблением реактивной мощности. Выбор оптимального местоположения и мощности компенсирующих устройств позволило оптимизировать режимы работы электрической сети и, как следствие, улучшить экономические показатели ее работы.
В разделе релейная защита приведено подробное описание и расчет уставок релейной защиты электропечного трансформатора мощностью 12500 кВА. На чертеже представлены принципиальная и оперативная схема релейной защиты.
Особое внимание в работе уделено вопросам безопасности жизнедеятельности на главной понизительной подстанции предприятия. Также в работе рассматривались вопросы экономической деятельности предприятия.
В результате проведенных расчетов была спроектирована система электроснабжения абразивного завода, отвечающая всем требованиям по качественному и надёжному электроснабжению.
Выбор рационального напряжения внешнего электроснабжения оценивался по формуле Стилла, расчет показал, что оптимальным напряжением для внешнего электроснабжения является 110 кВ.
Выбраны мощность, количество и место установки цеховых трансформаторов с современными трансформаторами типа ТМГ, обеспечивающими минимальные затраты при эксплуатации, малые габариты ТП и высокую надежность работы подстанций.
Распределение электрической энергии внутри предприятия осуществляется на напряжении 10 кВ по смешанной схеме, обеспечивающей оптимальные режимы работы электрической сети, надлежащее качество электроэнергии и надежность. Учитывая климатические условия, характеристики грунта и плотность застройки было принято решение прокладывать кабельные линии преимущественно в траншеях. В качестве проводника использовались кабели с изоляцией из сшитого полиэтилена марки АПвП-10 сечением 70, 120, 150, 240 мм .
В проекте уделено внимание вопросу компенсации реактивной мощности. Это объясняется низким значением средневзвешенного коэффициента мощности на предприятии, высокой стоимостью электроэнергии и значительным потреблением реактивной мощности. Выбор оптимального местоположения и мощности компенсирующих устройств позволило оптимизировать режимы работы электрической сети и, как следствие, улучшить экономические показатели ее работы.
В разделе релейная защита приведено подробное описание и расчет уставок релейной защиты электропечного трансформатора мощностью 12500 кВА. На чертеже представлены принципиальная и оперативная схема релейной защиты.
Особое внимание в работе уделено вопросам безопасности жизнедеятельности на главной понизительной подстанции предприятия. Также в работе рассматривались вопросы экономической деятельности предприятия.
В результате проведенных расчетов была спроектирована система электроснабжения абразивного завода, отвечающая всем требованиям по качественному и надёжному электроснабжению.



