Разработка алгоритмов анализа и классификации изображений с применением вейвлет-преобразований
|
Введение 4
1. Основные понятия 7
1.1 Понятие фрактальной размерности 8
1.2. Метод фрактальной сигнатуры 9
1.3. Вейвлет-преобразование 10
2. Численные эксперименты 14
Заключение 19
Литература 20
1. Основные понятия 7
1.1 Понятие фрактальной размерности 8
1.2. Метод фрактальной сигнатуры 9
1.3. Вейвлет-преобразование 10
2. Численные эксперименты 14
Заключение 19
Литература 20
Одной из наиболее актуальных задач современности и на текущий момент остается цифровая обработка изображений. Спектр применения очень широк: обработка документов, распознавание текстов и штриховых кодов, видеонаблюдение и системы безопасности, цифровая фотограмметрия и бесконтактные измерения, биометрия, зрение роботов и многое другое. В отдельное направление можно выделить автоматизированную обработку изображений в таких областях как биология и медицина. Обработка изображений с целью их распознавания является одной из центральных и практически важных задач при создании систем искусственного интеллекта.
Работа с цифровыми изображениями предполагает необходимость не только получение практических данных, которые несет в себе изображение, но и обработку целых множеств образцов и их разбиение на классы, выделение структуры. Задача анализа и классификации цифровых изображений приводит нас к необходимости выбора подходящего метода исследования из целого ряда таких методов, ориентированных на специфические области применения и опирающихся на различные математические и компьютерные модели: морфологические методы, частотная и линейная фильтрация, нейронные сети, текстурный анализ, вейвлет- преобразования и вычисление фрактальных характеристик изображения. Так, для анализа текстовых изображений, часто применяют морфологические методы, для анализа изображений биомедицинских препаратов — статистические текстурные [4,7].
В литературе нет единого определения, дающего понятия «текстуры». Формулировка Пикетта: «текстура используется для описания двумерных массивов изменений яркости», Претта - «текстура - описание пространственной упорядоченности элементов изображения», Харалика - «текстура - организованный участок поверхности», Тамуры - «текстура - нечто составляющее макроскопическую область», Ричарда - «текстура определена для наших целей как атрибут поля, не имеющего никаких компонентов (составляющих), которые выступают счетными (перечислимыми)» [15,16,17].
Среди свойств, позволяющих определить текстуру можно выделить распределение значений серого в пространстве. Именно оно лежит в основе большинства применяемых методов. Текстура в данном случае будет определяться как некоторая двумерная функция задающая значения серого. Это свойство текстуры позволяет ее классифицировать, а именно выделять типы однородных областей сопоставимых определенному классу. Позволяет также определять границы текстуры — это задача сегментации текстур.
Другое важное свойство для текстуры это повторяющийся характер расположения текстурных элементов в изображении. Здесь свое применение находят методы, позволяющие вычислять фрактальные характеристик изображения.
Таким образом текстурные методы охватывают достаточно широкий класс задач в т.ч. таких как вычисление фрактальных характеристик и сегментация изображений.
На практике в медицине наиболее часто применимыми являются текстурные методы. Примеры такого применения этого можно найти в [17]. Наряду с изображениями, представляющими снимки макроструктур (органы и ткани), несомненный интерес представляют снимки, полученные с помощью микроскопа. Здесь хорошо зарекомендовали себя мультифрактальные методы, позволяющие получать характеристику изображения в виде спектра (вектора) значений [7, 18].
С другой стороны вейвлеты зарекомендавали себя при решении задач сжатия и увеличения исходного изображения с минимальными потерями информации. Вейвлет-преобразования также позволяют проводить операции размытия и наведения резкости, выделения областей перепадов яркости.
В рамках данного исследования мы рассматриваем несколько подходов к анализу и классификации изображений. Основной фокус направлен на вычисление их фрактальных характеристик. В методах используется фрактальная сигнатура цветного изображения, приведенного в палитру grayscale (G) или представленного в компоненте H палитры HSV. Изображение рассматривается как целочисленная функция F, т.е. двумерная поверхность [10].
Можно выделить два основных исследуемых метода. В первом методе используется фрактальная сигнатура исследуемого изображения, где фрактальная сигнатура вычисляется согласно [11] (метод фрактальной сигнатуры). Второй метод основан на вычислении фрактальных характеристик вейвлет-преобразования изображения с помощью метода, описанного в [1]. Метод фрактальной сигнатуры заключается в вычислении площади поверхности А5 так называемого 8- параллельного тела для поверхности графика функции F. Под 8- параллельным телом понимают множество точек, находящихся на расстоянии не более чем 8 от поверхности графика функции F. Отношение log2А5 / log25 называется фрактальной сигнатурой. Путем последовательного изменения 8 в некотором диапазоне [1,N] вычисляется вектор фрактальных сигнатур, используемый нами в качестве характеристики изображения [6,7].
Для того чтобы выполнить вейвлет-преобразование, мы использовали функцию Гаусса и ее вторую частную производную, что обусловлено ее хорошими локальными свойствами [5].
Мы применяем такое преобразование к рассматриваемому цифровому изображению и затем вычисляем фрактальную сигнатуру полученного вейвлет-преобразования, которое мы рассматриваем как новое изображение. Изменяя значения масштаба в пределах экспериментально установленного диапазона мы получаем последовательность вейвлет-образов и вектор из соответствующих им фрактальных сигнатур. При этом фрактальная сигнатура вычисляется для 8 = 1, 2.
Таким образом, каждому исследуемому изображению сопоставляется два вектора фрактальных сигнатур. В обоих методах полученные вектора используются для того, чтобы определить принадлежность различных изображений к одному классу: чем меньше расстояние между векторами сравниваемых изображений A и B, тем больше вероятность того, что A и B принадлежать к одному классу. Проведенные эксперименты позволяют нам выбрать метод, показавший лучшее разделение для входного множества изображений, заранее разделенного на классы.
Постановка задачи
Цель: исследование применимости описанных выше алгоритмов для классификации сложных текстурных изображений. Реализация программной системы, которая основана на фрактальных и мультифрактальных методах обработки изображений.
Были выделены следующие подзадачи:
1. Исследование и апробация метода модифицированной фрактальной сигнатуры.
2. Исследование и апробация метода модифицированной фрактальной сигнатуры основанного на вейвлет-преобразовании.
В качестве анализируемых образцов были выбраны изображения биомедицинских препаратов.
Работа с цифровыми изображениями предполагает необходимость не только получение практических данных, которые несет в себе изображение, но и обработку целых множеств образцов и их разбиение на классы, выделение структуры. Задача анализа и классификации цифровых изображений приводит нас к необходимости выбора подходящего метода исследования из целого ряда таких методов, ориентированных на специфические области применения и опирающихся на различные математические и компьютерные модели: морфологические методы, частотная и линейная фильтрация, нейронные сети, текстурный анализ, вейвлет- преобразования и вычисление фрактальных характеристик изображения. Так, для анализа текстовых изображений, часто применяют морфологические методы, для анализа изображений биомедицинских препаратов — статистические текстурные [4,7].
В литературе нет единого определения, дающего понятия «текстуры». Формулировка Пикетта: «текстура используется для описания двумерных массивов изменений яркости», Претта - «текстура - описание пространственной упорядоченности элементов изображения», Харалика - «текстура - организованный участок поверхности», Тамуры - «текстура - нечто составляющее макроскопическую область», Ричарда - «текстура определена для наших целей как атрибут поля, не имеющего никаких компонентов (составляющих), которые выступают счетными (перечислимыми)» [15,16,17].
Среди свойств, позволяющих определить текстуру можно выделить распределение значений серого в пространстве. Именно оно лежит в основе большинства применяемых методов. Текстура в данном случае будет определяться как некоторая двумерная функция задающая значения серого. Это свойство текстуры позволяет ее классифицировать, а именно выделять типы однородных областей сопоставимых определенному классу. Позволяет также определять границы текстуры — это задача сегментации текстур.
Другое важное свойство для текстуры это повторяющийся характер расположения текстурных элементов в изображении. Здесь свое применение находят методы, позволяющие вычислять фрактальные характеристик изображения.
Таким образом текстурные методы охватывают достаточно широкий класс задач в т.ч. таких как вычисление фрактальных характеристик и сегментация изображений.
На практике в медицине наиболее часто применимыми являются текстурные методы. Примеры такого применения этого можно найти в [17]. Наряду с изображениями, представляющими снимки макроструктур (органы и ткани), несомненный интерес представляют снимки, полученные с помощью микроскопа. Здесь хорошо зарекомендовали себя мультифрактальные методы, позволяющие получать характеристику изображения в виде спектра (вектора) значений [7, 18].
С другой стороны вейвлеты зарекомендавали себя при решении задач сжатия и увеличения исходного изображения с минимальными потерями информации. Вейвлет-преобразования также позволяют проводить операции размытия и наведения резкости, выделения областей перепадов яркости.
В рамках данного исследования мы рассматриваем несколько подходов к анализу и классификации изображений. Основной фокус направлен на вычисление их фрактальных характеристик. В методах используется фрактальная сигнатура цветного изображения, приведенного в палитру grayscale (G) или представленного в компоненте H палитры HSV. Изображение рассматривается как целочисленная функция F, т.е. двумерная поверхность [10].
Можно выделить два основных исследуемых метода. В первом методе используется фрактальная сигнатура исследуемого изображения, где фрактальная сигнатура вычисляется согласно [11] (метод фрактальной сигнатуры). Второй метод основан на вычислении фрактальных характеристик вейвлет-преобразования изображения с помощью метода, описанного в [1]. Метод фрактальной сигнатуры заключается в вычислении площади поверхности А5 так называемого 8- параллельного тела для поверхности графика функции F. Под 8- параллельным телом понимают множество точек, находящихся на расстоянии не более чем 8 от поверхности графика функции F. Отношение log2А5 / log25 называется фрактальной сигнатурой. Путем последовательного изменения 8 в некотором диапазоне [1,N] вычисляется вектор фрактальных сигнатур, используемый нами в качестве характеристики изображения [6,7].
Для того чтобы выполнить вейвлет-преобразование, мы использовали функцию Гаусса и ее вторую частную производную, что обусловлено ее хорошими локальными свойствами [5].
Мы применяем такое преобразование к рассматриваемому цифровому изображению и затем вычисляем фрактальную сигнатуру полученного вейвлет-преобразования, которое мы рассматриваем как новое изображение. Изменяя значения масштаба в пределах экспериментально установленного диапазона мы получаем последовательность вейвлет-образов и вектор из соответствующих им фрактальных сигнатур. При этом фрактальная сигнатура вычисляется для 8 = 1, 2.
Таким образом, каждому исследуемому изображению сопоставляется два вектора фрактальных сигнатур. В обоих методах полученные вектора используются для того, чтобы определить принадлежность различных изображений к одному классу: чем меньше расстояние между векторами сравниваемых изображений A и B, тем больше вероятность того, что A и B принадлежать к одному классу. Проведенные эксперименты позволяют нам выбрать метод, показавший лучшее разделение для входного множества изображений, заранее разделенного на классы.
Постановка задачи
Цель: исследование применимости описанных выше алгоритмов для классификации сложных текстурных изображений. Реализация программной системы, которая основана на фрактальных и мультифрактальных методах обработки изображений.
Были выделены следующие подзадачи:
1. Исследование и апробация метода модифицированной фрактальной сигнатуры.
2. Исследование и апробация метода модифицированной фрактальной сигнатуры основанного на вейвлет-преобразовании.
В качестве анализируемых образцов были выбраны изображения биомедицинских препаратов.
В ходе проведенных экспериментов были получены результаты для обоих методов: после применения к изображениям в градациях серого и в шкале HSV (компонента H). Во всех случаях результаты оказались более точными, когда методы применялись к изображениям в шкале HSV (компонента H).
Также можно говорить о том, что в некоторых случаях применение вейвлет-преобразования к изображениям позволяет более точно разделить входное множество изображений на классы. Эксперименты показывают, что второй метод может быть применен для разделения множества цифровых изображений биомедицинских препаратов, имеющих ярко выраженные текстурные особенности.
Также можно говорить о том, что в некоторых случаях применение вейвлет-преобразования к изображениям позволяет более точно разделить входное множество изображений на классы. Эксперименты показывают, что второй метод может быть применен для разделения множества цифровых изображений биомедицинских препаратов, имеющих ярко выраженные текстурные особенности.
Подобные работы
- Методы и алгоритмы анализа изображений при помощи нейронных сетей
Магистерская диссертация, прикладная информатика. Язык работы: Русский. Цена: 4650 р. Год сдачи: 2023 - Разработка высокопроизводительной библиотеки вейвлет-фильтрации и машинного обучения для архитектуры ARM
Магистерская диссертация, информационные системы. Язык работы: Русский. Цена: 4900 р. Год сдачи: 2018 - ВЕЙВЛЕТ ФИЛЬТРАЦИЯ И МАШИННОЕ ОБУЧЕНИЕ В УСЛОВИЯХ АПРИОРНОЙ НЕОПРЕДЕЛЕННОСТИ В ЗАДАЧАХ КЛАССИФИКАЦИИ АКУСТИЧЕСКИХ СИГНАЛОВ
Магистерская диссертация, информационные системы. Язык работы: Русский. Цена: 4940 р. Год сдачи: 2018 - Разработка программного средства идентификации человека по фотографии
Дипломные работы, ВКР, программирование. Язык работы: Русский. Цена: 4780 р. Год сдачи: 2016 - Алгоритм извлечения текстовой информации из графических данных
Дипломные работы, ВКР, информационные системы. Язык работы: Русский. Цена: 4290 р. Год сдачи: 2016 - РАСПОЗНАВАНИЕ ПРИЗНАКОВ ДВИЖУЩИХСЯ ОБЪЕКТОВ С ИСПОЛЬЗОВАНИЕМ ФЕНОМЕНА МИКРО-ДОПЛЕРА
Дипломные работы, ВКР, информационные системы. Язык работы: Русский. Цена: 4285 р. Год сдачи: 2019 - Модуль голосовой идентификации диктора
Магистерская диссертация, информатика. Язык работы: Русский. Цена: 4900 р. Год сдачи: 2018 - Система контроля пропусков с фотофиксацией
Бакалаврская работа, информационные системы. Язык работы: Русский. Цена: 4900 р. Год сдачи: 2018 - ДЕШИФРИРОВАНИЕ ГЕОМОРФОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК ДНЕВНОЙ ПОВЕРХНОСТИ ПОКРОВНЫХ ЛЕДНИКОВ ПО МАТЕРИАЛАМ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ
Магистерская диссертация, картография. Язык работы: Русский. Цена: 4955 р. Год сдачи: 2019



