ОГЛАВЛЕНИЕ 3
Введение 4
Глава 1. Геометрия Лобачевского 5
1.1 Основные сведения геометрии Лобачевского 5
Глава 2. Модели плоскости Лобачевского 10
2.1. Интерпретация Пуанкаре плоскости Лобачевского 10
2.2. Интерпретация Кэли - Клейна плоскости Лобачевского 13
Глава 3. Преобразования плоскости Лобачевского и плоскости де Ситтера 18
3.1 Взаимосвязь преобразований плоскости де Ситтера и плоскости
Лобачевского 18
3.2 Орициклические вращения с несобственным центром в точке (0,0)
плоскости Лобачевского 19
3.3 Орициклические вращения с центром в точке (a, 0) 21
3.4 Вращения с центром в точке (0,1) плоскости Лобачевского 24
3.5 Вращения с центром в точке (a, b) плоскости Лобачевского 25
3.6 Сдвиги плоскости Лобачевского вдоль прямой x = 0 26
3.7 Сдвиги плоскости Лобачевского вдоль прямой x2 + у2 = 1 27
3.8 Сдвиги плоскости Лобачевского вдоль прямой с «концами» X, р 30
3.9 Движения второго рода плоскости Лобачевского 31
3.10 Переход от движений собственной области плоскости Лобачевского к
движениям ее идеальной области 32
3.11 Орициклические вращения с несобственным центром в точке (а,0)
плоскости де Ситтера 33
3.12 Оператор сдвига вдоль прямой x2+у2=1собственной области
плоскости Лобачевского и оператор вращения вокруг точки (0,1) плоскости де Ситтера 34
3.13 Вращения вокруг точки (a,b) плоскости де Ситтера 35
Задачи 36
Заключение 45
Список литературы 46
Любая теория современной науки считается единственно верной, пока не создана следующая. Это своеобразная аксиома развития науки.
Этот факт многократно подтверждался. Физика Ньютона переросла в релятивистскую физику, а та в квантовую. Теория флогистона стала химией, а самозарождение мышей из грязи обернулось биологией. Такова судьба всех наук, и нельзя сказать, что сегодняшнее открытие через двадцать лет не окажется грандиозной ошибкой. Но это тоже нормально - ещё Ломоносов говорил: «Алхимия - мать химии: дочь не виновата, что её мать глуповата».
Участь эта не обошла и геометрию. Традиционная евклидова геометрия переросла в неевклидову, геометрию Лобачевского. Именно этому разделу математики, его особенностям и посвящен этот проект.
Актуальность темы: неевклидова геометрия помогает взглянуть по- другому на окружающий нас мир, это интересный, необычный и прогрессивный раздел современной геометрии, она дает материал для размышлений - в ней не всё просто, не всё ясно с первого взгляда, чтобы её понять, нужно обладать фантазией и пространственным воображением.
Объект исследования: геометрия плоскости Лобачевского.
Предмет исследования: преобразования плоскости Лобачевского и плоскости де Ситтера.
Цели и задачи: изучение преобразований плоскости Лобачевского и плоскости де Ситтера.
Для достижения этой цели в работе решаются следующие задачи:
1. изучить модели плоскости Лобачевского.
2. изучить движения первого и второго рода и рассмотреть их на примерах;
Структуру и содержание данной работы составляют: введение, две главы, практическая часть, заключение.
В данной работе рассмотрены движения и преобразования более общего вида. Так же были рассмотрены две модели плоскости Лобачевского: модель Пуанкаре и модель Кэли-Клейна. В обоих случаях плоскостью Лобачевского может служить внутренность круга, и геометрия Лобачевского есть учение о тех свойствах фигур внутри круга, которые в случае модели Клейна не изменяются при проективных, а в случае модели Пуанкаре — при конформных преобразованиях круга самого в себя.
Движения плоскости Лобачевского задаются дробно - линейными подстановками комплексной переменной z = х -+- iy:
Движения первого рода разделяются на вращения, сдвиги вдоль прямой и орициклические вращения. Движения второго рода включают в себя симметрию и скользящую симметрию.
Полученные сведения при изучении движений плоскости Лобачевского и плоскости де Ситтера были использованы в составлении практической части данной работы.