СИНТЕЗ И РЕАКЦИОННАЯ СПОСОБНОСТЬ 1,2,3- ДИТИАЗОЛОВ (02.00.03 )
|
Содержание 2
Введение 3
Глава I Синтез и реакционная способность 1,2,3-дитиазолов (литературный обзор) 5
Введение 5
1 Методы получения 1,2,3-дитиазолов 5
1.1. Синтез 1,2,3-дитиазолов с участием хлористой серы 5
1.2. Синтез 1,2,3-дитиазолов с участием соли Аппеля 7
1.2.1. Синтез 1,2,3-дитиазолов с участием соли Аппеля, сопровождающийся отщеплением протонов или других электрофугов от одного атома субстрата 8
1.2.2. Синтез 1,2,3-дитиазолов с участием соли Аппеля, в которых уходящие частицы элиминируются от разных атомов субстрата 12
2. Реакционная способность 1,2,3-дитиазолов 13
2.1 Превращение 1,2,3-дитиазолов в линейные продукты 14
2.2 Превращение 1,2,3-дитиазолов в гетероциклические соединения 18
3. Реакции, в которых постулируется образование дитиазолиминов 33
4. Биологическая активность 1,2,3-дитиазолиминов 35 Глава II. Новые методы получения 1,2,3-дитиазолов и модификация их в гетероциклические соединения (обсуждение результатов) 37
1. Разработка новых методов получения производных 1,2,3-дитиазола 37
1.1. Синтез азометиленовых производных 1,2,3-дитиазола 36
1.2. Синтез N-винил 1,2,3-дитиазолов из азиридина и соли Аппеля. 43 2. Исследование реакционной способности 1,2,3-дитиазолов 47
2.1. Превращения азометиленовых производных 1,2,3-дитиазола 47
2.2. Превращения N -винил 1,2,3-дитиазолов 50 Глава III. Экспериментальная часть 62 Выводы 88 Список литературы 89 Приложение 93
Введение 3
Глава I Синтез и реакционная способность 1,2,3-дитиазолов (литературный обзор) 5
Введение 5
1 Методы получения 1,2,3-дитиазолов 5
1.1. Синтез 1,2,3-дитиазолов с участием хлористой серы 5
1.2. Синтез 1,2,3-дитиазолов с участием соли Аппеля 7
1.2.1. Синтез 1,2,3-дитиазолов с участием соли Аппеля, сопровождающийся отщеплением протонов или других электрофугов от одного атома субстрата 8
1.2.2. Синтез 1,2,3-дитиазолов с участием соли Аппеля, в которых уходящие частицы элиминируются от разных атомов субстрата 12
2. Реакционная способность 1,2,3-дитиазолов 13
2.1 Превращение 1,2,3-дитиазолов в линейные продукты 14
2.2 Превращение 1,2,3-дитиазолов в гетероциклические соединения 18
3. Реакции, в которых постулируется образование дитиазолиминов 33
4. Биологическая активность 1,2,3-дитиазолиминов 35 Глава II. Новые методы получения 1,2,3-дитиазолов и модификация их в гетероциклические соединения (обсуждение результатов) 37
1. Разработка новых методов получения производных 1,2,3-дитиазола 37
1.1. Синтез азометиленовых производных 1,2,3-дитиазола 36
1.2. Синтез N-винил 1,2,3-дитиазолов из азиридина и соли Аппеля. 43 2. Исследование реакционной способности 1,2,3-дитиазолов 47
2.1. Превращения азометиленовых производных 1,2,3-дитиазола 47
2.2. Превращения N -винил 1,2,3-дитиазолов 50 Глава III. Экспериментальная часть 62 Выводы 88 Список литературы 89 Приложение 93
Дитиазолы находят широкое применение в синтезе различных продуктов, обладающих полезными свойствами. Особое место среди них занимает реакционноспособный 1,2,3-изомер, уникальность которого заключается в том, что в зависимости от условий процесса и природы заместителей на начальном этапе реакции в этом цикле может происходить разрыв различных связей (C-S, N-S или S-S), обусловливающий образование разнообразной гаммы конечных веществ, включая различные гетероциклы. На основе 1,2,3-дитиазолов синтезированы продукты, обладающие широким спектром биологической активности: гербициды, фунгициды, инсектициды и антибактериальные соединения.
Естественно, что указанные свойства стимулируют дальнейшее развитие химии этого класса соединений и в первую очередь разработку новых способов их получения. Методы синтеза производных 1,2,3-дитиазола немногочисленны и требуют мягких условий в силу упоминавшейся высокой реакционной способности. Одним из наиболее удобных способов является взаимодействие доступного 4,5-дихлор-1,2,3-дитиазолий хлорида (соль Аппеля) с первичными аминами или соединениями, содержащими активный метиленовый фрагмент. Формально, здесь в процессе образования дитиазолов, сопряженных с C=N или C=C фрагментами происходит последовательное отщепление двух протонов от одного атома азота или углерода субстрата.
Существенным расширением этого подхода могли стать процессы, в которых во взаимодействие с солью Аппеля удалось вводить группы содержащие атомы азота или углерода с одним атомом водорода. При таком варианте, наряду с упомянутыми группами, субстрат должен содержать фрагменты, обеспечивающие элиминирование второго протона. Такими фрагментами могли быть напряженный цикл, двойная связь или система непредельных связей, соединенных с атомом, который атакуется солью Аппеля. Такого типа превращения ранее не были известны, более того возможность их проведения даже не обсуждалась, что побудило нас разработать этот новый способ получения производных 1,2,3-дитиазола, основанный на реакциях, сопровождающихся отщеплением двух протонов от разных атомов азота и углерода и исследовать превращения полученных дитиазолов в различные гетероциклические продукты.
В диссертации предложена новая методология создания производных 1,2,3- дитиазола, основанная на использовании реакций, в ходе которых происходит элиминирование протонов от разных атомов азота и углерода субстрата. Впервые исследовано взаимодействие N-монозамещённых гидразонов альдегидов с солью Аппеля,
4
в результате чего предложен подход к широкому ряду ранее не описанных азометиленовых производных 1,2,3-дитиазола. Показана возможность создания производных №винил-1,2,3-дитиазолиминов реакцией азиридинов с солью Аппеля. Исследованы превращения полученных производных 1,2,3-дитиазола в различные гетероциклические соединения. Установлено, что азометиленовые производные 1,2,3- дитиазола, содержащие азидную группу рядом с азогруппой, превращаются в бензотриазол. Взаимодействие азопроизводных с этилендиамином приводит к образованию дигидроимидазолов; при термолизе азометиленовых производных в диметилформамиде получается триазол.
Показано, что 1,2,3-дитиазолы, сопряженные с N-винильным фрагментом, под действием аминов гладко превращаются в ранее не описанные полифункциональные производные тиазола. Обнаружено, что при взаимодействии дитиазолимина с реагентом Лоуссена образуется тиазол, содержащий тиоамидную группу. Предложен способ синтеза продуктов, с непосредственно соединенными тиазольными и 1,2,4-оксадиазольными циклами. Разработан новый метод получения тиазолилтетразолов взаимодействием дитиазолимина с органическими азидами в условиях высокого давления. Изучено методом РСА тонкое строение азометиленовых производных 1,2,3-дитиазола, производных триазола и тиазолилтетразола. Для полученных соединений обнаружены противовирусные и антибактериальные свойства.
Диссертация включает три главы. В литературном обзоре (глава I) описываются способы получения и реакционная способность 1,2,3-дитиазолов. Вторая глава посвящена разработке новых способов получения производных 1,2,3-дитиазола и методам превращения их в различные гетероциклические структуры. Третья глава представляет собой экспериментальную часть, в которой собраны основные методики синтеза соединений.
Естественно, что указанные свойства стимулируют дальнейшее развитие химии этого класса соединений и в первую очередь разработку новых способов их получения. Методы синтеза производных 1,2,3-дитиазола немногочисленны и требуют мягких условий в силу упоминавшейся высокой реакционной способности. Одним из наиболее удобных способов является взаимодействие доступного 4,5-дихлор-1,2,3-дитиазолий хлорида (соль Аппеля) с первичными аминами или соединениями, содержащими активный метиленовый фрагмент. Формально, здесь в процессе образования дитиазолов, сопряженных с C=N или C=C фрагментами происходит последовательное отщепление двух протонов от одного атома азота или углерода субстрата.
Существенным расширением этого подхода могли стать процессы, в которых во взаимодействие с солью Аппеля удалось вводить группы содержащие атомы азота или углерода с одним атомом водорода. При таком варианте, наряду с упомянутыми группами, субстрат должен содержать фрагменты, обеспечивающие элиминирование второго протона. Такими фрагментами могли быть напряженный цикл, двойная связь или система непредельных связей, соединенных с атомом, который атакуется солью Аппеля. Такого типа превращения ранее не были известны, более того возможность их проведения даже не обсуждалась, что побудило нас разработать этот новый способ получения производных 1,2,3-дитиазола, основанный на реакциях, сопровождающихся отщеплением двух протонов от разных атомов азота и углерода и исследовать превращения полученных дитиазолов в различные гетероциклические продукты.
В диссертации предложена новая методология создания производных 1,2,3- дитиазола, основанная на использовании реакций, в ходе которых происходит элиминирование протонов от разных атомов азота и углерода субстрата. Впервые исследовано взаимодействие N-монозамещённых гидразонов альдегидов с солью Аппеля,
4
в результате чего предложен подход к широкому ряду ранее не описанных азометиленовых производных 1,2,3-дитиазола. Показана возможность создания производных №винил-1,2,3-дитиазолиминов реакцией азиридинов с солью Аппеля. Исследованы превращения полученных производных 1,2,3-дитиазола в различные гетероциклические соединения. Установлено, что азометиленовые производные 1,2,3- дитиазола, содержащие азидную группу рядом с азогруппой, превращаются в бензотриазол. Взаимодействие азопроизводных с этилендиамином приводит к образованию дигидроимидазолов; при термолизе азометиленовых производных в диметилформамиде получается триазол.
Показано, что 1,2,3-дитиазолы, сопряженные с N-винильным фрагментом, под действием аминов гладко превращаются в ранее не описанные полифункциональные производные тиазола. Обнаружено, что при взаимодействии дитиазолимина с реагентом Лоуссена образуется тиазол, содержащий тиоамидную группу. Предложен способ синтеза продуктов, с непосредственно соединенными тиазольными и 1,2,4-оксадиазольными циклами. Разработан новый метод получения тиазолилтетразолов взаимодействием дитиазолимина с органическими азидами в условиях высокого давления. Изучено методом РСА тонкое строение азометиленовых производных 1,2,3-дитиазола, производных триазола и тиазолилтетразола. Для полученных соединений обнаружены противовирусные и антибактериальные свойства.
Диссертация включает три главы. В литературном обзоре (глава I) описываются способы получения и реакционная способность 1,2,3-дитиазолов. Вторая глава посвящена разработке новых способов получения производных 1,2,3-дитиазола и методам превращения их в различные гетероциклические структуры. Третья глава представляет собой экспериментальную часть, в которой собраны основные методики синтеза соединений.
1. Предложена новая методология получения 1,2,3-дитиазолов, основанная на использовании реакций с участием соли Аппеля, в которых отщепление атомов водорода происходит от разных атомов азота и углерода субстрата.
2. Разработан метод получения новых азометиленовых производных 1,2,3-дитиазолов реакцией N-монозамещенных гидразонов альдегидов с солью Аппеля.
3. Предложен способ синтеза ранее не описанных N-винил 1,2,3-дитиазолов, заключающийся во взаимодействии азиридинов с солью Аппеля.
4. Показана возможность использования как азогруппы, так и дитиазольного цикла в азометиленовых производных дитиазола в создании различных гетероциклических структур - производных бензотриазола, дигидроимидазола, триазола.
5. Установлено, что 1,2,3-дитиазолы, сопряженные с N-винильным фрагментом, под действием аминов гладко превращается в ранее не описанные различные полифункциональные производные тиазола.
6. Предложен новый метод получения тиазолов, содержащих тиоамидную группу реакцией иминодитиазолов с реагентом Лоуссена.
7. Разработан новый метод получения тетразолилтиазолов взаимодействием дитиазолиминов с органическими азидами в условиях высокого давления.
8. Для ряда полученных соединений обнаружена выраженная противовирусная активность по отношению к ДНК-содержащим вирусам.
2. Разработан метод получения новых азометиленовых производных 1,2,3-дитиазолов реакцией N-монозамещенных гидразонов альдегидов с солью Аппеля.
3. Предложен способ синтеза ранее не описанных N-винил 1,2,3-дитиазолов, заключающийся во взаимодействии азиридинов с солью Аппеля.
4. Показана возможность использования как азогруппы, так и дитиазольного цикла в азометиленовых производных дитиазола в создании различных гетероциклических структур - производных бензотриазола, дигидроимидазола, триазола.
5. Установлено, что 1,2,3-дитиазолы, сопряженные с N-винильным фрагментом, под действием аминов гладко превращается в ранее не описанные различные полифункциональные производные тиазола.
6. Предложен новый метод получения тиазолов, содержащих тиоамидную группу реакцией иминодитиазолов с реагентом Лоуссена.
7. Разработан новый метод получения тетразолилтиазолов взаимодействием дитиазолиминов с органическими азидами в условиях высокого давления.
8. Для ряда полученных соединений обнаружена выраженная противовирусная активность по отношению к ДНК-содержащим вирусам.



