Электроснабжение служит для обеспечения электроэнергией всех отраслей хозяйства: промышленности, сельского хозяйства, транспорта, городского хозяйства. В систему электроснабжения входят источники питания, повышающие и понижающие подстанции электрические, питающие распределительные электрические сети, различные вспомогательные устройства и сооружения. Основная часть вырабатываемой электроэнергии потребляется промышленностью. Структура электроснабжения определяется исторически сложившимися особенностями производства и распределения электроэнергии в отдельных странах. Принципы построения систем электроснабжения в развитых странах являются общими. Некоторая специфика и местные различия в схемах электроснабжения зависят от размеров территории страны, её климатических условий, уровня экономического развития, объёма промышленного производства и плотности размещения электрифицированных объектов и их энергоёмкости.
Основные источники питания электроэнергией - электростанции и питающие сети районных энергетических систем. На промышленных предприятиях и в городах для комбинированного снабжения энергией и теплом используют теплоэлектроцентрали, мощность которых определяется потребностью в тепле для технологических нужд и отопления. Для крупных энергоёмких предприятий, например металлургических заводов с большим теплопотреблением и значительным выходом вторичных энергоресурсов, сооружаются мощные ТЭЦ, на которых устанавливают генераторы, вырабатывающие ток напряжением до 20 кВ. Такие электростанции, обычно расположенные за пределами завода на расстоянии до 1 -2 км, имеют районное значение и, кроме предприятия, снабжают электрической энергией и теплом близлежащие промышленные и жилые районы.
Важный показатель уровня жизни общества - удельное потребление электрической энергии населением. Количество электроэнергии, приходящееся на человека, косвенно характеризует уровень комфортности жилья и степень совершенства инфраструктуры городов и других населённых пунктов. Во всех развитых странах наблюдается устойчивый рост названного показателя.
Увеличение потребления электроэнергии населением повышает требования по надёжности и энергоэффективности сетей электроснабжения разного уровня - от электросетей крупных мегаполисов до сетей отдельных многоквартирных домов. Для нашей страны это особенно важно в силу изношенности электросетевого оборудования и роста доли жилья повышенной комфортности, оснащённого мощной бытовой техникой. Развитие уличного освещения, световой рекламы и иллюминационного оформления городов также предъявляет особые требования к системам электроснабжения. В современных условиях главные задачи специалистов, осуществляющих проектирование и эксплуатацию современных систем электроснабжения микрорайонов - это правильное определение электрических нагрузок, рациональная передача и распределение электроэнергии между потребителями, гибкое управление. Для решения этих задач необходимы навыки выбора энергосберегающих режимов работы линий электропередачи (ЛЭП), трансформаторов и других электрических аппаратов. Особое значение для энергосбережения имеют навыки проведения мероприятий, направленных на компенсацию неактивных составляющих мощности, обеспечение высокого качества электроэнергии и правильную организацию учёта электроэнергии.
Развитие систем электроснабжения привело к созданию объектов типа «Умный дом» - интеллектуальной системы управления, которая обеспечивает автоматическую работу всех инженерных сетей дома. Управление энергосистемой, отоплением, вентиляцией, безопасностью и другими процессами в вашем доме. Всё это можно при помощи данной технологии. Система «Умный дом» - это система домашних устройств, способных выполнять действия и решать определенные задачи без участия человека. Например, автоматическое включение и выключение света, коррекция работы климатической системы, системы безопасности и другие процессы. Уникальное качество этой системы это гибкость, пользователь сам настраивает оптимальные для него параметры в зависимости от его потребностей, а система оптимизирует настройки сводя затраты используемых на это ресурсов к минимуму, чем экономит время и деньги пользователя. Данная система так же имеет возможность модернизации, что позволит использовать новые устройства, не меняя всей системы, а заменяя или добавляя лишь те устройства, которые дадут наибольшую эффективность. На сегодняшний день внедрение данной технологии позволит экономить до 30% энергоресурсов. Система «Умный дом» включает в себя три типа устройств:
- контроллер (хаб) - это управляющее устройство, соединяющее все элементы системы друг с другом и связывающее её с внешним миром;
- датчики (сенсоры) - устройства, получающие информацию о внешних условиях;
- актуаторы - это исполнительные устройства, непосредственно исполняющие команды. Это самая многочисленная группа, в которую входят различные выключатели, розетки, сервоприводы, сирены и так далее.
Почти во всех случаях контроллер соединен с остальными устройствами по радиоканалу, что упрощает размещение и подключение, а так же не требует многочисленных проводов. На сегодняшний день возможности данной технологии ограничиваются лишь фантазией пользователя. Сейчас у многих есть загородные дома, дачи которые ставят перед людьми ряд задач по уходу и обслуживанию этих домов, для многих это представляет не мало проблем. Например: проветривание дома, полив растений, открывание парников и теплиц, безопасность, отопление. Чтобы выполнить эти действия, мы тратим время и ресурсы.
Представьте помощника, который не только будет следить за вашим домом, но и позволит вам сэкономить ваше время и деньги. В данной работе представлен дом на территории с температурами от -30 до +30 С. Рельеф площадки равнинный, характеризующийся малой разницей высотных отметок повышенных и пониженных мест и слабо выраженным уклоном в западном направлении. Инженерно-геологические элементы почвы с поверхности площадки представлены каменистой почвой. Удельное сопротивление каменистой почвы Яуд = 200 Ом. Дом построен на монолитном фундаменте, стены из кирпича в два слоя. Стены, пол и потолок утеплены теплоизоляционным материалом, дом состоит из двух этажей.
Энергоснабжение осуществляется воздушной линией напряжением 0,4 кВ. Отопление водяное, трубы проложены в напольном покрытии, что позволяет экономить ресурсы на обогрев до 30%, нагрев осуществляется с помощью комбинированного котла (газ) мощностью до 4,5 кВт. Освещение выполнено с использованием LED технологий, что заметно сокращает потребление энергии. Система контроля и управления электропитанием - следит за качеством и количеством потребляемой электроэнергии. Системы отопления, вентиляции и кондиционирования - обеспечивает регуляцию температуры, влажности и поступления свежего воздуха. Экономия энергии за счет рационального использования температуры среды. Система безопасности использует системы контроля доступа в помещение, защиты от протечек труб в помещениях, охранно-пожарная сигнализация, которая следит, в том числе, за утечкой газа. Имитация присутствия и GSM мониторинг, который оповестит пользователя обо всех инцидентах в доме. Система освещения, контролирующая уровень освещенности в помещении, которая позволит экономить электроэнергию за счет рационального использования естественного освещения. Система управления климатом в помещениях и сооружениях на прилегающей территории (гараж, зимний сад), которая будет следить за соблюдением климатических условий установленных пользователем
Целью данной выпускной квалификационной работы являлось решение проблемы проектирования электроснабжения коттеджного поселка «Коркинские просторы» .
Коттеджный посёлок относится к потребителям третьей категории по надёжности электроснабжения. В коттеджном комплексе установлено 5 однотрансформаторных КТП. Место установки КТП и линия их питания обусловлена генпланом застройки.
Определение расчетных нагрузок сооружаемых объектов произведено с использованием метода удельных расчетных нагрузок, что соответствует рекомендациям по определению расчетных нагрузок жилых домов и общественных зданий.
Произведён расчёт электрической сети, который заключался: в выборе трансформаторов с учётом их перегрузочной способности; расчёте сечения кабельных линий электропередач и выборе кабелей с учётом длительно допустимого тока, экономической плотности тока и допустимой потере напряжения.
Выбраны четыре трансформатора типа ТМГ мощностью 250 кВА и один 400 кВА.ВЛ-10 выполняется проводом СИП-3 (3x25).Также произведен расчет системы уличного освещения. Выбраны светодиодные светильники фирмы «Модуль» с лампами мощностью 32 Вт. Светильники подвешиваются на железобетонных опорах на высоте 5 м. Шаг светильников 41 метр.
Рассмотрели спецвопрос на тему «Применение солнечных батарей в частных домах». Было рассмотрено 2 варианта солнечных электростанций для частного дома: первый, с использованием аккумуляторов, а второй без использования.
1. Правила устройства электроустановок. 7-е издание. / Ред. А.М. Меламед М.: НЦ ЭНАС, 2016.- 552с. http://files.stroyinf.ru/Data1/7/7177/
2. Справочник по проектированию электроснабжения. Электроустановки промышленных предприятий./Под общ. ред. Ю. Г. Барыбина и др. - М: Энергоатомиздат, 2015-576с.
3. Электрическая часть электростанций и подстанций. Изд.4-е / Б.Н. Неклепаев, И.Л. Крачков и др. - М: Энергоатомиздат, 2016-607с.
4. Справочник по электроснабжению и электрооборудованию. Том 2. /Под общ. ред. А.А. Федорова; - М: Энергоатомиздат, 2015-568с.
5. Электрооборудование станций и подстанций. 3-е издание, переработанное и дополненное / Л.Д. Рожкова, В.С. Козулин и др. - М: Энергоатомиздат, 2017-648с.
6. ГОСТ 13109-03 “Электроэнергия. Совместимость технических средств. Нормы качества электроэнергии в СЭС”, 2015-250 с.
7. В.П. Шеховцов. Расчёт и проектирование схем электроснабжения. Методическое пособие для курсового проектирования. — М.: ФОРУМ: ИНФРА-М, 2016. — 214 с.
8. А. А. Федоров, Л. Е. Старкова Основы электроснабжения промышленных предприятий: Учебник для вузов. - 4-е изд., перераб. и доп. - М.: Энергоатомиздат, 2014. - 472с.
9. Г.Н. Ополева. Схемы и подстанции электроснабжения: Справочник: Учеб. пособие. — М.: ФОРУМ: ИНФРА-М, 2015. — 480 с. — (высшее образование).
10. РД 153-34.0-20.527-98 Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования, Москва, «Издательство НЦ ЭНАС», 2015
11. Е.Я. Рябкова. Заземление в установках высокого напряжения. — М.: Энергия, 2013 г.—224 стр.
12. И.Г. Карапетян. Справочник по проектированию электрических сетей / И.Г. Карапетян, Д.Л. Файбисович, И.М. Шапиро / Под ред. Д.Л. Файбисовича. 2-е изд., перераб и доп. - М.: Изд-во НЦ ЭНАС, 2015.- 352 с.: ил.
13. http://www.nrec.com/ru/category/Digital-Substation.html - Цифровая подстанция // NR Electric Co., Ltd
14. http://www.ntc-power.ru/upload/presentation/CPS - Моржин Ю.И. Цифровая подстанция - важный элемент интеллектуальной энергосистемы.
15. Гавричев В. Д., Дмитриев А. Л. Волоконно-оптические датчики магнитного поля: учебное пособие. СПб.: СПбНИУ ИТМО, 2015.
16. Лебедев В.Д., Филатова Г.А., Нестерихин А.Е. Измерительные
преобразователи тока для цифровых устройств релейной защиты и автоматики // Современные направления развития систем релейной защиты и автоматики энергосистем: Научные труды IV Международной научно -технической конференции, г. Екатеринбург, 2013.