АНАЛИЗ МЕТИЛИРОВАНИЯ ДНК ПРИ РАКЕ ШЕЙКИ МАТКИ (14.00.14)
|
СПИСОК СОКРАЩЕНИЙ 5
ВВЕДЕНИЕ 6
МЕТИЛИРОВАНИЕ ДНК 9
Распространение метилирования ДНК 9
Функция метилирования ДНК 12
Метилирование во время развития 13
Ферменты метилирования 15
Метилирование как динамический процесс 17
Роль метилирования в канцерогенезе 20
Генетическая роль метилирования ДНК в канцерогенезе 22
Эпигенетическая роль метилирования ДНК в канцерогенезе 23
Сравнительный анализ современных методов определения статуса
метилирования ДНК 33
Методы анализа статуса метилирования CpG динуклеотидов 33
Методы идентификации CpG-островков, аберрантно-метилированных в
опухолях 35
Заключение 37
МАТЕРИАЛЫ И МЕТОДЫ 38
1. Список использованных реактивов 38
2. Клинические материалы 40
3. Выделение ДНК и РНК из клеточных культур 41
4. Выделение ДНК из лейкоцитов 41
5. Рестрикция геномной ДНК 42
6. Бисульфитная модификация ДНК 43
7. Полимеразная цепная реакция 43
7.1. Праймеры 43
7.2. Метилчувствительная ПЦР со статистическими GC-богатыми праймерами 45
- 3 -
7.3. Метилчувствительная ПЦР со специфическими
праймерами 46
7.4. Метилспецифическая ПЦР 46
8. Выделение продуктов ПЦР из гелей 47
8.1. Выделение продуктов ПЦР из полиакриламидного геля 47
8.2. Выделение продуктов ПЦР из агарозного геля 47
9. Клонирование продуктов ПЦР 47
9.1. Вектор 47
9.2. Получение компетентных клеток Escherichia coli 48
9.3. Трансформация клеток Escherichia coli 49
9.4. Выделение плазмидной ДНК 49
10. Гель-электрофорез 50
10.1. Электрофоретическое разделение ДНК в агарозном геле 50
10.2. Электрофоретическое разделение РНК в агарозном геле 51
10.3. Электрофорез ПЦР-амплифицированной ДНК в денатурирующем полиакриламидном геле 52
11. Блот-гибридизация 53
11.1. Перенос ДНК на нейлоновую мембрану 53
11.2. Перенос РНК на нитроцеллюлозную мембрану 53
11.3. Получение меченого зонда 54
11.4. Гибридизация ДНК (РНК), иммобилизованной на мембране 54
12. Обратная транскрипция 55
13. Переосаждение ДНК (РНК) 55
14. Анализ нуклеотидных последовательностей 55
14.1. Поиск гомологий в банках данных 55
14.2. Критерии CpG-островков 56
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ 57
1. Поиск CpG-островков, гиперметилированных в опухолях шейки матки 57
- 4 -
1.1. Принцип метода метилчувствительной ПЦР со статистическими GC-богатыми праймерами 57
1.2. Анализ фрагментов, выявленных с помощью метилчувствительной
ПЦР со статистическими GC-богатыми праймерами 63
1.3. Определение статуса метилирования CpG-островка 32 при раке
шейки матки 70
1.4. Определение полного размера CpG-островка гена в3А-адаптина 72
2. Исследование экспрессии и статуса метилирования гена /33А-адаптина
при раке шейки матки 76
2.1. Исследование экспрессии мРНК гена р3А-адаптина в опухолях шейки матки и в клеточных линиях рака шейки матки 76
2.2. Изучение статуса метилирования CpG-островка гена р3А-адаптина в
опухолях шейки матки и в клеточных линиях рака шейки матки 78
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 86
ВЫВОДЫ 94
ЛИТЕРАТУРА 95
ВВЕДЕНИЕ 6
МЕТИЛИРОВАНИЕ ДНК 9
Распространение метилирования ДНК 9
Функция метилирования ДНК 12
Метилирование во время развития 13
Ферменты метилирования 15
Метилирование как динамический процесс 17
Роль метилирования в канцерогенезе 20
Генетическая роль метилирования ДНК в канцерогенезе 22
Эпигенетическая роль метилирования ДНК в канцерогенезе 23
Сравнительный анализ современных методов определения статуса
метилирования ДНК 33
Методы анализа статуса метилирования CpG динуклеотидов 33
Методы идентификации CpG-островков, аберрантно-метилированных в
опухолях 35
Заключение 37
МАТЕРИАЛЫ И МЕТОДЫ 38
1. Список использованных реактивов 38
2. Клинические материалы 40
3. Выделение ДНК и РНК из клеточных культур 41
4. Выделение ДНК из лейкоцитов 41
5. Рестрикция геномной ДНК 42
6. Бисульфитная модификация ДНК 43
7. Полимеразная цепная реакция 43
7.1. Праймеры 43
7.2. Метилчувствительная ПЦР со статистическими GC-богатыми праймерами 45
- 3 -
7.3. Метилчувствительная ПЦР со специфическими
праймерами 46
7.4. Метилспецифическая ПЦР 46
8. Выделение продуктов ПЦР из гелей 47
8.1. Выделение продуктов ПЦР из полиакриламидного геля 47
8.2. Выделение продуктов ПЦР из агарозного геля 47
9. Клонирование продуктов ПЦР 47
9.1. Вектор 47
9.2. Получение компетентных клеток Escherichia coli 48
9.3. Трансформация клеток Escherichia coli 49
9.4. Выделение плазмидной ДНК 49
10. Гель-электрофорез 50
10.1. Электрофоретическое разделение ДНК в агарозном геле 50
10.2. Электрофоретическое разделение РНК в агарозном геле 51
10.3. Электрофорез ПЦР-амплифицированной ДНК в денатурирующем полиакриламидном геле 52
11. Блот-гибридизация 53
11.1. Перенос ДНК на нейлоновую мембрану 53
11.2. Перенос РНК на нитроцеллюлозную мембрану 53
11.3. Получение меченого зонда 54
11.4. Гибридизация ДНК (РНК), иммобилизованной на мембране 54
12. Обратная транскрипция 55
13. Переосаждение ДНК (РНК) 55
14. Анализ нуклеотидных последовательностей 55
14.1. Поиск гомологий в банках данных 55
14.2. Критерии CpG-островков 56
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ 57
1. Поиск CpG-островков, гиперметилированных в опухолях шейки матки 57
- 4 -
1.1. Принцип метода метилчувствительной ПЦР со статистическими GC-богатыми праймерами 57
1.2. Анализ фрагментов, выявленных с помощью метилчувствительной
ПЦР со статистическими GC-богатыми праймерами 63
1.3. Определение статуса метилирования CpG-островка 32 при раке
шейки матки 70
1.4. Определение полного размера CpG-островка гена в3А-адаптина 72
2. Исследование экспрессии и статуса метилирования гена /33А-адаптина
при раке шейки матки 76
2.1. Исследование экспрессии мРНК гена р3А-адаптина в опухолях шейки матки и в клеточных линиях рака шейки матки 76
2.2. Изучение статуса метилирования CpG-островка гена р3А-адаптина в
опухолях шейки матки и в клеточных линиях рака шейки матки 78
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 86
ВЫВОДЫ 94
ЛИТЕРАТУРА 95
Актуальность темы: Рак шейки матки занимает второе место среди всех онкологических заболеваний у женщин. Этиологическим фактором рака шейки матки (РШМ) признаны вирусы папиллом человека (HPV) из так называемой группы высокого риска (типы 16, 18 и другие). После вирусной инфекции РШМ может развиться через стадии дисплазии, рака in situ на протяжении нескольких лет, в течение которых в прогрессию опухоли вносят вклад возникающие и накапливающиеся изменения в клеточных генах, регулирующих такие важные для нормальной жизнедеятельности клетки процессы, как пролиферация, апоптоз, ангиогенез, поддержание генетической стабильности.
В последнее десятилетие было установлено, что в многостадийном процессе образования опухолей нарушение функций клеточных генов может происходить не только в результате генетических событий (точечные мутации, делеции, амплификация и реарранжировка генов), но и в результате эпигенетических изменений, в том числе локального гиперметилирования ДНК. Аберрантному метилированию в опухолевых клетках подвергаются специфические последовательности - CpG-островки, ассоциированные с 5’ регуляторными районами многих генов. В нормальных клетках большинство CpG-островков не метилировано, а их метилирование в опухолевых клетках, как правило, сопровождается подавлением транскрипции соответствующего гена, наследуемой при делении клетки. Механизмы инициации локального метилирования CpG-островков в опухолях пока не ясны.
В последнее время разработаны методы идентификации гиперметилированных районов ДНК, основанные на дифференциальном статусе метилирования CpG-островков в нормальных и опухолевых клетках. Во многих случаях с помощью этих методов были идентифицированы гены, инактивируемые в опухолях путем аберрантного метилирования ассоциированных с ними CpG-островков. Среди них обнаружены как новые гены, утрата функций которых оказалась существенной для развития
- 7 -
опухолей, так и известные гены, подавление экспрессии которых в опухолях в отсутствии инактивирующих мутаций уже было продемонстрировано. Число генов, для которых обнаружен альтернативный мутациям эпигенетический механизм инактивации в опухолях, постоянно растет, что свидетельствует о широком распространении этого механизма в процессе канцерогенеза.
Цель настоящей работы: Идентификация гиперметилированных в опухолях шейки матки CpG-островков и ассоциированных с ними генов, экспрессия которых может быть подавлена вследствие нарушения метилирования ДНК.
Исходя из цели работы, были поставлены следующие экспериментальные задачи:
1) Провести скрининг аберрантно-метилированных GC-богатых последовательностей ДНК в карциномах шейки матки методом метилчувствительной ПЦР со статистическими GC-богатыми праймерами, определить нуклеотидную последовательность обнаруженных GC- богатых фрагментов ДНК, выявить среди них CpG-островки.
2) Провести поиск в базах данных гомологий выявленных CpG-островков с известными последовательностями ДНК.
3) В случае отсутствия гомологий CpG-островка с известными последовательностями в базах данных, провести клонирование и определение нуклеотидной последовательности фрагментов ДНК, фланкирующих CpG-островок для его локализации в геноме человека.
4) В случае установления ассоциации выявленных CpG-островков с генами, провести анализ статуса метилирования и экспрессии соответствующих генов в первичных опухолях и клеточных линиях карцином шейки матки.
Научная новизна и практическая ценность работы:
С помощью метода метилчувствительной ПЦР со статистическими GC- богатыми праймерами было выявлено 7 GC-богатых фрагментов ДНК длиной от 300 до 1200 пар оснований, пять из которых (более двух третей)
- 8 -
обладают свойствами CpG-островков. Из пяти выявленных CpG-островков два оказались непредставленными в опубликованных версиях генома человека: фрагмент 26 был представлен неполностью (отсутствовала область, фланкирующая 5' конец гена @3А-адаптина), фрагмент 22 до сих пор отсутствует в опубликованных базах данных.
В работе впервые показано подавление экспрессии мРНК гена @3А- адаптина в клеточных линиях рака шейки матки. Продукт гена @3А- адаптина представляет собой одну из субъединиц адаптерного комплекса АР-3, вовлеченного во внутриклеточный транспорт белков. Показана возможность восстановления экспрессии мРНК @3А-адаптина под действием деметилирующего агента 5-азацитидина, что указывает на связь процессов метилирования и транскрипции гена. Впервые определена нуклеотидная последовательность района, прилегающего к 5’ концу гена. Установлены размер первого экзона гена @3А-адаптина и размер CpG-островка, ассоциированного с геном. CpG-островок гена @3А-адаптина включает 5’ нетранскрибируемый район гена, первый экзон и начало первого интрона.
Теоретическое значение работы заключается в получении новых данных об участии клеточных генов в механизме злокачественной трансформации под действием вирусов папиллом человека. Обнаруженное подавление экспрессии гена @3А-адаптина в клетках карцином шейки матки указывает на необходимость дальнейшего исследования роли белковых комплексов, вовлеченных в эндо/экзоцитоз белков, в канцерогенезе. Показана возможность идентифицикации CpG-островков, до сих пор не представленных в опубликованных версиях нуклеотидных последовательностей генома человека, с помощью метода метилчувствительной ПЦР со статистическими GC-богатыми праймерами, что позволяет получить информацию о GC-богатых трудноклонируемых районах генома человека.
В последнее десятилетие было установлено, что в многостадийном процессе образования опухолей нарушение функций клеточных генов может происходить не только в результате генетических событий (точечные мутации, делеции, амплификация и реарранжировка генов), но и в результате эпигенетических изменений, в том числе локального гиперметилирования ДНК. Аберрантному метилированию в опухолевых клетках подвергаются специфические последовательности - CpG-островки, ассоциированные с 5’ регуляторными районами многих генов. В нормальных клетках большинство CpG-островков не метилировано, а их метилирование в опухолевых клетках, как правило, сопровождается подавлением транскрипции соответствующего гена, наследуемой при делении клетки. Механизмы инициации локального метилирования CpG-островков в опухолях пока не ясны.
В последнее время разработаны методы идентификации гиперметилированных районов ДНК, основанные на дифференциальном статусе метилирования CpG-островков в нормальных и опухолевых клетках. Во многих случаях с помощью этих методов были идентифицированы гены, инактивируемые в опухолях путем аберрантного метилирования ассоциированных с ними CpG-островков. Среди них обнаружены как новые гены, утрата функций которых оказалась существенной для развития
- 7 -
опухолей, так и известные гены, подавление экспрессии которых в опухолях в отсутствии инактивирующих мутаций уже было продемонстрировано. Число генов, для которых обнаружен альтернативный мутациям эпигенетический механизм инактивации в опухолях, постоянно растет, что свидетельствует о широком распространении этого механизма в процессе канцерогенеза.
Цель настоящей работы: Идентификация гиперметилированных в опухолях шейки матки CpG-островков и ассоциированных с ними генов, экспрессия которых может быть подавлена вследствие нарушения метилирования ДНК.
Исходя из цели работы, были поставлены следующие экспериментальные задачи:
1) Провести скрининг аберрантно-метилированных GC-богатых последовательностей ДНК в карциномах шейки матки методом метилчувствительной ПЦР со статистическими GC-богатыми праймерами, определить нуклеотидную последовательность обнаруженных GC- богатых фрагментов ДНК, выявить среди них CpG-островки.
2) Провести поиск в базах данных гомологий выявленных CpG-островков с известными последовательностями ДНК.
3) В случае отсутствия гомологий CpG-островка с известными последовательностями в базах данных, провести клонирование и определение нуклеотидной последовательности фрагментов ДНК, фланкирующих CpG-островок для его локализации в геноме человека.
4) В случае установления ассоциации выявленных CpG-островков с генами, провести анализ статуса метилирования и экспрессии соответствующих генов в первичных опухолях и клеточных линиях карцином шейки матки.
Научная новизна и практическая ценность работы:
С помощью метода метилчувствительной ПЦР со статистическими GC- богатыми праймерами было выявлено 7 GC-богатых фрагментов ДНК длиной от 300 до 1200 пар оснований, пять из которых (более двух третей)
- 8 -
обладают свойствами CpG-островков. Из пяти выявленных CpG-островков два оказались непредставленными в опубликованных версиях генома человека: фрагмент 26 был представлен неполностью (отсутствовала область, фланкирующая 5' конец гена @3А-адаптина), фрагмент 22 до сих пор отсутствует в опубликованных базах данных.
В работе впервые показано подавление экспрессии мРНК гена @3А- адаптина в клеточных линиях рака шейки матки. Продукт гена @3А- адаптина представляет собой одну из субъединиц адаптерного комплекса АР-3, вовлеченного во внутриклеточный транспорт белков. Показана возможность восстановления экспрессии мРНК @3А-адаптина под действием деметилирующего агента 5-азацитидина, что указывает на связь процессов метилирования и транскрипции гена. Впервые определена нуклеотидная последовательность района, прилегающего к 5’ концу гена. Установлены размер первого экзона гена @3А-адаптина и размер CpG-островка, ассоциированного с геном. CpG-островок гена @3А-адаптина включает 5’ нетранскрибируемый район гена, первый экзон и начало первого интрона.
Теоретическое значение работы заключается в получении новых данных об участии клеточных генов в механизме злокачественной трансформации под действием вирусов папиллом человека. Обнаруженное подавление экспрессии гена @3А-адаптина в клетках карцином шейки матки указывает на необходимость дальнейшего исследования роли белковых комплексов, вовлеченных в эндо/экзоцитоз белков, в канцерогенезе. Показана возможность идентифицикации CpG-островков, до сих пор не представленных в опубликованных версиях нуклеотидных последовательностей генома человека, с помощью метода метилчувствительной ПЦР со статистическими GC-богатыми праймерами, что позволяет получить информацию о GC-богатых трудноклонируемых районах генома человека.
CpG-островки являются структурно-функциональными элементами генома. Как уже отмечалось нами ранее, они преимущественно располагаются на 5' концах генов в области нетранскрибируемых последовательностей промоторов, первых экзонов и интронов и, за некоторыми исключениями (импринтинг, инактивированная Х хромосома), не метилированы в нормальной клетке. Предпринятый в работе поиск CpG- островков с измененным статусом метилирования в опухолевых клетках по сравнению с нормальными позволил получить результаты, которые могут быть рассмотрены в двух аспектах. Представляется интересным оценить, во- первых, возможность использования метода метилчувствительной ПЦР со статистическими GC-богатыми праймерами для выявления последовательностей, обладающих свойствами CpG-островков, во-вторых, способность метода дифференцировать метилированные и неметилированные CpG-островки.
С помощью использованного метода было выявлено 7 GC-богатых фрагментов ДНК длиной от 300 до 1200 пар оснований, пять из которых (более двух третей) обладают свойствами CpG-островков. Из пяти выявленных CpG-островков два оказались непредставленными в опубликованных версиях генома человека: CpG-островок 26 был представлен неполностью (отсутствовала область, фланкирующая 5' конец гена вЗА- адаптина), CpG-островок 22 до сих пор отсутствует в опубликованных базах данных. Отсутствие CpG-островков в банках известных последовательностей связано, по-видимому, с трудностями секвенирования GC-богатых фрагментов ДНК стандартными методами, а также с тем обстоятельством, что CpG-островки с высокой частотой встречаются в горячих точках рекомбинации, вследствие чего могут утрачиваться при клонировании (Kong et al. 2002). Это может быть связано также с использованием NotI-клонотек для построения крупномасштабных физических карт генома человека. В последнее время было обнаружено, что при создании таких клонотек
- 87 -
утрачиваются относительно короткие фрагменты, содержащие кластеры сайтов узнавания крупнощепящей рестриктазы NotI, о существовании которых ранее не было известно (Домнинский и др. 1999). Утраченные фрагменты с большой вероятностью содержат CpG-островки, так как по расчетам около 90% сайтов узнавания NotI должны располагаться в CpG- островках (Lindsay and Bird 1987). Таким образом, использованный в работе метод скрининга GC-богатых последовательностей позволяет эффективно выявлять CpG-островки, в том числе и непредставленные в банках известных последовательностей генома, и может быть полезен для заполнения "белых пятен" в геноме человека.
Для оценки способности использованного метода идентифицировать дифференциально-метелированные CpG-островки необходим анализ их статуса метилирования в клеточных линиях и первичных опухолях шейки матки по сравнению с нормальными тканями. Такой анализ проведен для двух CpG-островков: CpG-островка 32, локализованного на 13 хромосоме, и CpG-островка 26, ассоциированного с геном вЗА-адаптина.
Для CpG-островка 32 метилированные аллели были обнаружены в лейкоцитах периферической крови носителей опухоли, в большинстве опухолей шейки матки и нормальных тканей, прилегающих к опухоли. Однако в 1 из 22 опухолей шейки матки наблюдалось отсутствие метилирования этого района. Таким образом, CpG-островок 32 действительно различно метилирован в некоторых опухолях и нормальных тканях. Обнаруженный характер метилирования CpG-островка 32 (присутствие метилированных аллелей в нормальных тканях) делает его вполне возможным кандидатом на роль CpG-островка, связанного с импринтированным локусом на хромосоме 13q34, и указывает на необходимость его дальнейшего исследования.
При подтверждении статуса метилирования CpG-островка, ассоциированного с геном вЗА-адаптина (фрагмент 26), было обнаружено расхождение между результатами методов, основанных на применении
- 88 -
метилчувствительных рестриктаз и прямым определением метилцитозина путем бисульфитного секвенирования. В данном случае имела место устойчивость одного из сайтов узнавания метилчувствительного фермента SacII к действию фермента, несмотря на отсутствие метилирования цитозина в нем. Устойчивость к гидролизу этого сайта SacII была подтверждена на большом числе образцов ДНК и наблюдалась параллельно с полным гидролизом другого сайта SacII, расположенного в пределах этого CpG- островка. По-видимому, такая относительная устойчивость связана с особенностями структуры ДНК в GC-богатых районах, фланкирующих этот сайт. Так как скрининг дифференциально-метилированных фрагментов ДНК методом метилчувствительной ПЦР со статистическими GC-богатыми праймерами основан на использовании метилчувствительных рестриктаз, необходимо принимать во внимание возможность неполной рестрикции, связанной с особенностями структуры GC-богатых районов. Таким образом, отбор дифференциально-метилированных CpG-островков данным методом возможен, но в сочетании с дополнительным тщательным анализом статуса метилирования идентифицированных CpG-островков, включающим большой набор метилчувствительных рестриктаз, а также методы, основанные на прямом определении 5-метилцитозина в последовательности. Возможность успешного скрининга этим методом изменений метилирования, ассоциированных с канцерогенезом, была также продемонстрирована другими авторами (Kohno et al. 1998; Liang et al. 2000).
Из 5 идентифицированных нами CpG-островков только один (CpG- островок 26) имел частичную гомологию с 5’ концом известного гена вЗА- адаптина и был подробно нами исследован. В результате клонирования, определения нуклеотидной последовательности полноразмерного CpG- островка гена вЗА-адаптина, анализа его статуса метилирования и экспрессии был обнаружен следующий феномен. С одной стороны, было обнаружено подавление экспрессии мРНК вЗА-адаптина в одной из опухолей и в двух клеточных линиях рака шейки матки. При этом экспрессия
- 89 -
мРНК в3А-адаптина может быть активирована в клеточных линиях обработкой деметилирующим агентом 5-азацитидином. С другой стороны, анализ статуса метилирования CpG-островка гена @3А-адаптина с использованием метилчувствительных рестриктаз и прямым определением 5- метилцитозина секвенированием ДНК, обработанной бисульфитом натрия, выявил отсутствие существенного метилирования в клеточных линиях, первичных опухолях шейки матки и лейкоцитах периферической крови в районе промотора и первого экзона. Ген @3А-адаптина представляет собой не единственный пример такого рода. Феномен непрямой активации экспрессии гена (в отсутствие метилирования CpG-островка гена) в результате обработки опухолевых клеток деметилирующими агентами 5- азацитидином и 5-аза-2'-дезоксицитидином был описан для генов Apaf-1 (Soengas et al. 2001), TIMP-2 (Cappabianca et al. 2003), TGF-fi (Shin et al. 1992) и TGF-fiRlI (Ammanamanchi et al. 1998). В трех последних случаях было показано, что активация экспрессии мРНК этих генов происходила вследствие активации транскрипционных факторов Sp1 и NF-Y.
Восстановление транскрипции генов, в том числе и @3А-адаптина, под действием деметилирующих агентов может быть связано с двумя механизмами их действия. Во-первых, эти агенты вызывают деметилирование ДНК, ингибируя ферментативное метилирование цитозиновых остатков во вновь синтезированной цепи ДНК. Это приводит к дефициту 5-метилцитозиновых остатков по всему геному обработанных клеток. Вполне возможно, что в результате этого процесса происходит деметилирование и активация экспрессии регулятора транскрипции @3А- адаптина, который был инактивирован метилированием в опухолевой клетке, что и было причиной подавления транскрипции @3А-адаптина. Вполне возможно, что $3А-адаптин опосредовано инактивируется в результате абберантного метилирования других районов ДНК в опухолевых клетках.
- 90 -
Во-вторых, недавно было показано, что 5-аза-2'-дезоксицитидин, независимо от его деметилирующего действия на ДНК, обладает также способностью подавлять лизин-специфическое метилирование гистонов и индуцировать быструю деконденсацию гетерохроматина (Takebayashi et al. 2001; Nguyen et al. 2002; Kondo and Issa 2003). Присутствие гистона Н3, метилированного по лизину в положении 9, является характерной чертой гетерохроматина и наблюдается на инактивированной Х хромосоме, в репрессивном хроматине во время развития и в районе генов, аберрантно- нетранскрибируемых при канцерогенезе (Boggs et al. 2002; Peters et al. 2002; Nguyen et al. 2002). Нельзя исключить, что вызываемое 5-аза-2'- дезоксицитидином деметилирование лизина 9 гистона Н3 и сопровождающее его ремоделирование гетерохроматина может при наличии соответствующих транскрипционных факторов в обрабатываемых клетках активировать транскрипцию генов, инактивация которых не связана с метилированием их промоторов.
Подавление транскрипции гена вЗА-адаптина в опухолевых клетках ранее не было описано. Вопрос о частоте этого события в первичных опухолях шейки матки требует дальнейшего исследования методами, позволяющими исключить взаимную контаминацию опухолевых и нормальных клеток, что важно из-за убиквитарного характера экспрессии гена (ОТ-ПЦР in situ, иммуногистохимия, микродиссекционные препараты РНК).
Остается открытым вопрос о том, какие селективные преимущества может обеспечить опухолевой клетке подавление экспрессии одной из субъединиц комплекса АР3.
Белок р3Л-адаптин представляет собой большую субъединицу гетеротетрамерного адаптерного белкового комплекса АР-3. Ген, продуктом которого является в3Л-адаптин, локализован на хромосоме 5 в зоне 5q14.1 и экспрессируется во всех исследованных тканях (Dell’Angelica et al. 1997). Всего у млекопитающих описано четыре таких комплекса: АР-1, АР-2, АР-3
- 91 -
и АР-4 (см. обзор Boehm and Bonifacino 2001). Каждый из комплексов состоит из 4 субъединиц: двух больших адаптинов (один из у/а/5/s и в 1-4, соответственно), одного среднего адаптина (^1-4) и одного малого адаптина (о 1-4). Также как и в3Л-адаптин, белки адаптерных комплексов экспрессируются во всех клетках млекопитающих. Аналогичные субъединицы всех четырех комплексов гомологичны друг другу и имеют похожую доменную организацию, что предполагает и функциональное сходство. Они локализованы на мембранах органелл, осуществляющих экзо/эндоцитоз. АР комплексы принимают участие в образовании транспортных везикул, в узнавании переносимых белков и в вовлечении их в транспортные везикулы. Так АР-2, по-видимому, локализуется исключительно на плазматической мембране и осуществляет быстрый эндоцитоз активированных мембранных рецепторов. АР-1, АР-3 и АР-4, в свою очередь, располагаются на мембранах внутриклеточных компарментов, таких как транс-сеть аппарата Гольджи и эндосомы. Однако данные об исключительной локализации в3Л-адаптина только в этой части аппарата Гольджи противоречивы (см. обзор Boehm and Bonifacino 2002). Комплекс АР-3 участвует в транспорте белков к лизосомам и родственным им органеллам. У млекопитающих сюда входят меланосомы и плотные тельца тромбоцитов (см. обзор Boehm and Bonifacino 2002). АР-1, АР-3 и АР-4 комплексы взаимодействуют с цитозольными доменами трансмембранных белков, однако, механизмы такого взаимодействия и его взаимосвязь со специфическим событием, составляющим сортировку белков, пока не понятны. Показано, что связывание с сигналами сортировки в транспортируемых белках могут выполнять ^ и в субъединицы (см. обзор Robinson and Bonifacino 2001). Так, в субъединица узнает дилейциновый сигнал в аминокислотной последовательности белка-мишени (Rapoport et al. 1998).
Природные мутации 5 и в субъединиц адаптерного комплекса АР3 у мышей приводят к гипопигментации волосяного покрова и глаз, длительным
- 92 -
кровотечениям и нарушениям в структуре лизосом (см. обзор Boehm and Bonifacino 2002). Такие фенотипические проявления являются отражением дефектов биогенеза меланосом, плотных телец тромбоцитов и лизосом, соответственно. У человека также обнаружены мутации гена @3А-адаптина при синдроме Hermansky-Pudlak второго типа (HPS-2). Подобно мутантным мышам, у людей с этим синдромом наблюдается гипопигментация глаз и кожи, длительные кровотечения и нарушения в структуре лизосом. Как в мутантных мышиных клетках, так и в клетках от больных HPS-2 обнаружен ошибочный транспорт белков лизосомальной мембраны CD63 и lamp-1 через цитоплазматическую мембрану. Возможно, что наблюдаемые дефекты в АР- 3-дефецитных клетках реализуются именно через неправильные сортировку или транспорт ряда трансмембранных белков в соответствующие органеллы. Хотя ген в3А-адаптина экспрессируется убиквитарно, т.е. во всех тканях взрослого организма, его мутации приводят к фенотипическим проявлениям только в меланоцитах и тромбоцитах. Возможно, что в этих клетках комплекс АР-3 имеет какие-то специфические функции в дополнение к функциям, выполняемым во всех других клетках.
В последнее время появились свидетельства того, что белки везикулярного транспорта вовлечены в канцерогенез (см. обзор Floyd and De Camilli 1998). Описаны транслокации трех генов, продукты которых участвуют в эндоцитозе (AF1-p, EEN и CALM), при различных формах лейкозов. Однако, точные функции продуктов этих генов в эндоцитозе пока неизвестны. Амфифизины I и II участвуют в формировании клатрин- ассоциированных везикул. Амфифизин I гиперэкспрессирован при раке молочной железы. Амфифизин II связывается с протоонкогеном c-Abl и усиливает его трансформирующую способность.
Одним из возможных объяснений роли нарушений экспрессии белков везикулярного транспорта в канцерогенезе может быть возникающее вследствие этого нарушение экспрессии различных рецепторов на поверхности клеток. В пользу такой точки зрения говорят следующие
- 93 -
экспериментальные факты. Показано, что клетки, экспрессирующие рецептор эпидермального фактора роста (EGFR), неспособный подвергаться интернализации, обладают повышенным пролиферативным ответом на действие EGF (Vieira at al. 1996). Также продемонстрировано, что продукт гена Nef вируса иммунодефицита человека первого типа (HIV-1) способен индуцировать быстрый эндоцитоз CD4 рецептора с поверхности клеток и направлять его в лизосомы, последовательно взаимодействуя с комплексами двух типов AP и COPI, участвующими в везикулярном транспорте (Janvier et al. 2001). Иными словами, взаимодействие Nef с белками везикулярного транспорта приводит к нарушению нормального транспорта рецептора CD4 и подавлению его экспрессии на поверхности клеток. Таким образом, нарушение корректного везикулярного транспорта может существенно повлиять на экспрессию рецепторов на поверхности клеток.
Недавно с помощью системы двойных гибридов было обнаружено взаимодействие продукта одного из ранних генов HPV-16 белка Е2 с 5- адаптином. в3А-адаптин и 5-адаптин - это две большие субъединицы комплекса АР-3 (Boehm and Bonifacino 2001). Пока не показано существования взаимодействия Е2 и 5-адаптина в физиологических условиях в HPV-16-позитивных клетках опухолей шейки матки. Обнаруженное нами снижение экспрессии мРНК вЗА-адаптина в HP V-позитивных опухолях и взаимодействие вирусного белка Е2 с 5-адаптином указывают на необходимость исследования нарушений везикулярного транспорта в опухолях шейки матки.
Недостаток знаний о функциях комплекса АР-3 не позволяет пока однозначно ответить на вопрос о том, какие последствия для опухолевой клетки может иметь подавление экспрессии одной из его субъединиц - 03А- адаптина.
С помощью использованного метода было выявлено 7 GC-богатых фрагментов ДНК длиной от 300 до 1200 пар оснований, пять из которых (более двух третей) обладают свойствами CpG-островков. Из пяти выявленных CpG-островков два оказались непредставленными в опубликованных версиях генома человека: CpG-островок 26 был представлен неполностью (отсутствовала область, фланкирующая 5' конец гена вЗА- адаптина), CpG-островок 22 до сих пор отсутствует в опубликованных базах данных. Отсутствие CpG-островков в банках известных последовательностей связано, по-видимому, с трудностями секвенирования GC-богатых фрагментов ДНК стандартными методами, а также с тем обстоятельством, что CpG-островки с высокой частотой встречаются в горячих точках рекомбинации, вследствие чего могут утрачиваться при клонировании (Kong et al. 2002). Это может быть связано также с использованием NotI-клонотек для построения крупномасштабных физических карт генома человека. В последнее время было обнаружено, что при создании таких клонотек
- 87 -
утрачиваются относительно короткие фрагменты, содержащие кластеры сайтов узнавания крупнощепящей рестриктазы NotI, о существовании которых ранее не было известно (Домнинский и др. 1999). Утраченные фрагменты с большой вероятностью содержат CpG-островки, так как по расчетам около 90% сайтов узнавания NotI должны располагаться в CpG- островках (Lindsay and Bird 1987). Таким образом, использованный в работе метод скрининга GC-богатых последовательностей позволяет эффективно выявлять CpG-островки, в том числе и непредставленные в банках известных последовательностей генома, и может быть полезен для заполнения "белых пятен" в геноме человека.
Для оценки способности использованного метода идентифицировать дифференциально-метелированные CpG-островки необходим анализ их статуса метилирования в клеточных линиях и первичных опухолях шейки матки по сравнению с нормальными тканями. Такой анализ проведен для двух CpG-островков: CpG-островка 32, локализованного на 13 хромосоме, и CpG-островка 26, ассоциированного с геном вЗА-адаптина.
Для CpG-островка 32 метилированные аллели были обнаружены в лейкоцитах периферической крови носителей опухоли, в большинстве опухолей шейки матки и нормальных тканей, прилегающих к опухоли. Однако в 1 из 22 опухолей шейки матки наблюдалось отсутствие метилирования этого района. Таким образом, CpG-островок 32 действительно различно метилирован в некоторых опухолях и нормальных тканях. Обнаруженный характер метилирования CpG-островка 32 (присутствие метилированных аллелей в нормальных тканях) делает его вполне возможным кандидатом на роль CpG-островка, связанного с импринтированным локусом на хромосоме 13q34, и указывает на необходимость его дальнейшего исследования.
При подтверждении статуса метилирования CpG-островка, ассоциированного с геном вЗА-адаптина (фрагмент 26), было обнаружено расхождение между результатами методов, основанных на применении
- 88 -
метилчувствительных рестриктаз и прямым определением метилцитозина путем бисульфитного секвенирования. В данном случае имела место устойчивость одного из сайтов узнавания метилчувствительного фермента SacII к действию фермента, несмотря на отсутствие метилирования цитозина в нем. Устойчивость к гидролизу этого сайта SacII была подтверждена на большом числе образцов ДНК и наблюдалась параллельно с полным гидролизом другого сайта SacII, расположенного в пределах этого CpG- островка. По-видимому, такая относительная устойчивость связана с особенностями структуры ДНК в GC-богатых районах, фланкирующих этот сайт. Так как скрининг дифференциально-метилированных фрагментов ДНК методом метилчувствительной ПЦР со статистическими GC-богатыми праймерами основан на использовании метилчувствительных рестриктаз, необходимо принимать во внимание возможность неполной рестрикции, связанной с особенностями структуры GC-богатых районов. Таким образом, отбор дифференциально-метилированных CpG-островков данным методом возможен, но в сочетании с дополнительным тщательным анализом статуса метилирования идентифицированных CpG-островков, включающим большой набор метилчувствительных рестриктаз, а также методы, основанные на прямом определении 5-метилцитозина в последовательности. Возможность успешного скрининга этим методом изменений метилирования, ассоциированных с канцерогенезом, была также продемонстрирована другими авторами (Kohno et al. 1998; Liang et al. 2000).
Из 5 идентифицированных нами CpG-островков только один (CpG- островок 26) имел частичную гомологию с 5’ концом известного гена вЗА- адаптина и был подробно нами исследован. В результате клонирования, определения нуклеотидной последовательности полноразмерного CpG- островка гена вЗА-адаптина, анализа его статуса метилирования и экспрессии был обнаружен следующий феномен. С одной стороны, было обнаружено подавление экспрессии мРНК вЗА-адаптина в одной из опухолей и в двух клеточных линиях рака шейки матки. При этом экспрессия
- 89 -
мРНК в3А-адаптина может быть активирована в клеточных линиях обработкой деметилирующим агентом 5-азацитидином. С другой стороны, анализ статуса метилирования CpG-островка гена @3А-адаптина с использованием метилчувствительных рестриктаз и прямым определением 5- метилцитозина секвенированием ДНК, обработанной бисульфитом натрия, выявил отсутствие существенного метилирования в клеточных линиях, первичных опухолях шейки матки и лейкоцитах периферической крови в районе промотора и первого экзона. Ген @3А-адаптина представляет собой не единственный пример такого рода. Феномен непрямой активации экспрессии гена (в отсутствие метилирования CpG-островка гена) в результате обработки опухолевых клеток деметилирующими агентами 5- азацитидином и 5-аза-2'-дезоксицитидином был описан для генов Apaf-1 (Soengas et al. 2001), TIMP-2 (Cappabianca et al. 2003), TGF-fi (Shin et al. 1992) и TGF-fiRlI (Ammanamanchi et al. 1998). В трех последних случаях было показано, что активация экспрессии мРНК этих генов происходила вследствие активации транскрипционных факторов Sp1 и NF-Y.
Восстановление транскрипции генов, в том числе и @3А-адаптина, под действием деметилирующих агентов может быть связано с двумя механизмами их действия. Во-первых, эти агенты вызывают деметилирование ДНК, ингибируя ферментативное метилирование цитозиновых остатков во вновь синтезированной цепи ДНК. Это приводит к дефициту 5-метилцитозиновых остатков по всему геному обработанных клеток. Вполне возможно, что в результате этого процесса происходит деметилирование и активация экспрессии регулятора транскрипции @3А- адаптина, который был инактивирован метилированием в опухолевой клетке, что и было причиной подавления транскрипции @3А-адаптина. Вполне возможно, что $3А-адаптин опосредовано инактивируется в результате абберантного метилирования других районов ДНК в опухолевых клетках.
- 90 -
Во-вторых, недавно было показано, что 5-аза-2'-дезоксицитидин, независимо от его деметилирующего действия на ДНК, обладает также способностью подавлять лизин-специфическое метилирование гистонов и индуцировать быструю деконденсацию гетерохроматина (Takebayashi et al. 2001; Nguyen et al. 2002; Kondo and Issa 2003). Присутствие гистона Н3, метилированного по лизину в положении 9, является характерной чертой гетерохроматина и наблюдается на инактивированной Х хромосоме, в репрессивном хроматине во время развития и в районе генов, аберрантно- нетранскрибируемых при канцерогенезе (Boggs et al. 2002; Peters et al. 2002; Nguyen et al. 2002). Нельзя исключить, что вызываемое 5-аза-2'- дезоксицитидином деметилирование лизина 9 гистона Н3 и сопровождающее его ремоделирование гетерохроматина может при наличии соответствующих транскрипционных факторов в обрабатываемых клетках активировать транскрипцию генов, инактивация которых не связана с метилированием их промоторов.
Подавление транскрипции гена вЗА-адаптина в опухолевых клетках ранее не было описано. Вопрос о частоте этого события в первичных опухолях шейки матки требует дальнейшего исследования методами, позволяющими исключить взаимную контаминацию опухолевых и нормальных клеток, что важно из-за убиквитарного характера экспрессии гена (ОТ-ПЦР in situ, иммуногистохимия, микродиссекционные препараты РНК).
Остается открытым вопрос о том, какие селективные преимущества может обеспечить опухолевой клетке подавление экспрессии одной из субъединиц комплекса АР3.
Белок р3Л-адаптин представляет собой большую субъединицу гетеротетрамерного адаптерного белкового комплекса АР-3. Ген, продуктом которого является в3Л-адаптин, локализован на хромосоме 5 в зоне 5q14.1 и экспрессируется во всех исследованных тканях (Dell’Angelica et al. 1997). Всего у млекопитающих описано четыре таких комплекса: АР-1, АР-2, АР-3
- 91 -
и АР-4 (см. обзор Boehm and Bonifacino 2001). Каждый из комплексов состоит из 4 субъединиц: двух больших адаптинов (один из у/а/5/s и в 1-4, соответственно), одного среднего адаптина (^1-4) и одного малого адаптина (о 1-4). Также как и в3Л-адаптин, белки адаптерных комплексов экспрессируются во всех клетках млекопитающих. Аналогичные субъединицы всех четырех комплексов гомологичны друг другу и имеют похожую доменную организацию, что предполагает и функциональное сходство. Они локализованы на мембранах органелл, осуществляющих экзо/эндоцитоз. АР комплексы принимают участие в образовании транспортных везикул, в узнавании переносимых белков и в вовлечении их в транспортные везикулы. Так АР-2, по-видимому, локализуется исключительно на плазматической мембране и осуществляет быстрый эндоцитоз активированных мембранных рецепторов. АР-1, АР-3 и АР-4, в свою очередь, располагаются на мембранах внутриклеточных компарментов, таких как транс-сеть аппарата Гольджи и эндосомы. Однако данные об исключительной локализации в3Л-адаптина только в этой части аппарата Гольджи противоречивы (см. обзор Boehm and Bonifacino 2002). Комплекс АР-3 участвует в транспорте белков к лизосомам и родственным им органеллам. У млекопитающих сюда входят меланосомы и плотные тельца тромбоцитов (см. обзор Boehm and Bonifacino 2002). АР-1, АР-3 и АР-4 комплексы взаимодействуют с цитозольными доменами трансмембранных белков, однако, механизмы такого взаимодействия и его взаимосвязь со специфическим событием, составляющим сортировку белков, пока не понятны. Показано, что связывание с сигналами сортировки в транспортируемых белках могут выполнять ^ и в субъединицы (см. обзор Robinson and Bonifacino 2001). Так, в субъединица узнает дилейциновый сигнал в аминокислотной последовательности белка-мишени (Rapoport et al. 1998).
Природные мутации 5 и в субъединиц адаптерного комплекса АР3 у мышей приводят к гипопигментации волосяного покрова и глаз, длительным
- 92 -
кровотечениям и нарушениям в структуре лизосом (см. обзор Boehm and Bonifacino 2002). Такие фенотипические проявления являются отражением дефектов биогенеза меланосом, плотных телец тромбоцитов и лизосом, соответственно. У человека также обнаружены мутации гена @3А-адаптина при синдроме Hermansky-Pudlak второго типа (HPS-2). Подобно мутантным мышам, у людей с этим синдромом наблюдается гипопигментация глаз и кожи, длительные кровотечения и нарушения в структуре лизосом. Как в мутантных мышиных клетках, так и в клетках от больных HPS-2 обнаружен ошибочный транспорт белков лизосомальной мембраны CD63 и lamp-1 через цитоплазматическую мембрану. Возможно, что наблюдаемые дефекты в АР- 3-дефецитных клетках реализуются именно через неправильные сортировку или транспорт ряда трансмембранных белков в соответствующие органеллы. Хотя ген в3А-адаптина экспрессируется убиквитарно, т.е. во всех тканях взрослого организма, его мутации приводят к фенотипическим проявлениям только в меланоцитах и тромбоцитах. Возможно, что в этих клетках комплекс АР-3 имеет какие-то специфические функции в дополнение к функциям, выполняемым во всех других клетках.
В последнее время появились свидетельства того, что белки везикулярного транспорта вовлечены в канцерогенез (см. обзор Floyd and De Camilli 1998). Описаны транслокации трех генов, продукты которых участвуют в эндоцитозе (AF1-p, EEN и CALM), при различных формах лейкозов. Однако, точные функции продуктов этих генов в эндоцитозе пока неизвестны. Амфифизины I и II участвуют в формировании клатрин- ассоциированных везикул. Амфифизин I гиперэкспрессирован при раке молочной железы. Амфифизин II связывается с протоонкогеном c-Abl и усиливает его трансформирующую способность.
Одним из возможных объяснений роли нарушений экспрессии белков везикулярного транспорта в канцерогенезе может быть возникающее вследствие этого нарушение экспрессии различных рецепторов на поверхности клеток. В пользу такой точки зрения говорят следующие
- 93 -
экспериментальные факты. Показано, что клетки, экспрессирующие рецептор эпидермального фактора роста (EGFR), неспособный подвергаться интернализации, обладают повышенным пролиферативным ответом на действие EGF (Vieira at al. 1996). Также продемонстрировано, что продукт гена Nef вируса иммунодефицита человека первого типа (HIV-1) способен индуцировать быстрый эндоцитоз CD4 рецептора с поверхности клеток и направлять его в лизосомы, последовательно взаимодействуя с комплексами двух типов AP и COPI, участвующими в везикулярном транспорте (Janvier et al. 2001). Иными словами, взаимодействие Nef с белками везикулярного транспорта приводит к нарушению нормального транспорта рецептора CD4 и подавлению его экспрессии на поверхности клеток. Таким образом, нарушение корректного везикулярного транспорта может существенно повлиять на экспрессию рецепторов на поверхности клеток.
Недавно с помощью системы двойных гибридов было обнаружено взаимодействие продукта одного из ранних генов HPV-16 белка Е2 с 5- адаптином. в3А-адаптин и 5-адаптин - это две большие субъединицы комплекса АР-3 (Boehm and Bonifacino 2001). Пока не показано существования взаимодействия Е2 и 5-адаптина в физиологических условиях в HPV-16-позитивных клетках опухолей шейки матки. Обнаруженное нами снижение экспрессии мРНК вЗА-адаптина в HP V-позитивных опухолях и взаимодействие вирусного белка Е2 с 5-адаптином указывают на необходимость исследования нарушений везикулярного транспорта в опухолях шейки матки.
Недостаток знаний о функциях комплекса АР-3 не позволяет пока однозначно ответить на вопрос о том, какие последствия для опухолевой клетки может иметь подавление экспрессии одной из его субъединиц - 03А- адаптина.



