МНОГОЧАСТИЧНЫЕ РАСПАДЫ ТЯЖЕЛЫХ КВАРКОНИЕВ И Z-БОЗОНА. (01.04.02)
|
Введение 4
Глава I. Четырехчастичные распады тяжелого
ортокваркония 16
1. Введение 16
2. Амплитуда процесса n3S1(QQ) ^ qqgg 23
3. Дифференциальная вероятность распада 25
4. Кварковые и глюонные функции распределения 26
Глава II. Трехчастичные распады тяжелых
паракваркониев 33
1. Введение 33
2. Амплитуды трехчастичных распадов 37
3. Вероятность трехглюонного распада 38
4. Вероятность кварк-глюонного распада 40
5. Энергетические и угловые функции распределений
в кварк-глюонном распаде 46
6. Учет обрезания по углам разлета и энергиям
частиц 52
Глава III. Дваждырадиационный распад Z ^ //77 56
1. Введение 56
2. Амплитуда распада Z ^ / /77 64
3. Вероятность распада Z ^ / /77 66
4. Анализ полученных результатов 69
Заключение 77
- 3-
Приложение А 80
Приложение Б 81
Приложение В 85
Приложение Г 88
Литература 92
Глава I. Четырехчастичные распады тяжелого
ортокваркония 16
1. Введение 16
2. Амплитуда процесса n3S1(QQ) ^ qqgg 23
3. Дифференциальная вероятность распада 25
4. Кварковые и глюонные функции распределения 26
Глава II. Трехчастичные распады тяжелых
паракваркониев 33
1. Введение 33
2. Амплитуды трехчастичных распадов 37
3. Вероятность трехглюонного распада 38
4. Вероятность кварк-глюонного распада 40
5. Энергетические и угловые функции распределений
в кварк-глюонном распаде 46
6. Учет обрезания по углам разлета и энергиям
частиц 52
Глава III. Дваждырадиационный распад Z ^ //77 56
1. Введение 56
2. Амплитуда распада Z ^ / /77 64
3. Вероятность распада Z ^ / /77 66
4. Анализ полученных результатов 69
Заключение 77
- 3-
Приложение А 80
Приложение Б 81
Приложение В 85
Приложение Г 88
Литература 92
Создание стандатной модели элементарных частиц относится к концу 60-х - началу 70-х годов, когда произошли качественные изменения в понимании как сильных, так и слабых взаимодействий на основе принципа локальной калибровочной инвариантности. Это позволило единым образом рассмотреть слабые и электромагнитные взаимодействия и по¬казать, что несмотря на существенное различие наблюдаемых характеристик этих взаимодействий, их можно, тем не менее, рассматривать как два разных проявления одного более фундаментального взаимодействия. В отличии от слабых сильные взаимодействия стоят несколько особняком, и пока не известно никаких экспериментальных указаний на единую природу сильных и электрослабых взаимодействий. В связи с этим установившаяся к настоящему времени стандартная модель взаимодействий элементарных частиц основана на калибровочной группе SUc(3) х SUL(2) х Ur(1), где сильные взаимодействия описываются квантовой хромодинамикой, построенной на основе группы SUc(3), а электрослабые взаимодействия - единой электрослабой теорией Глешоу- Вайнберга-Салама на основе группы SUL(2) х UR( 1).
На возможность объединения слабых и электромагнитных взаимодействий впервые указал Швингер [1] в 1957 году, отметивший их векторную природу. Глешоу предположил, что в искомой перенормируемой теории слабых взаимодействий должны одновременно рассматриваться и электромагнитные взаимодействия, предложив [2] модель с калибровочной
- 5-
SU(2) х U(1) симметрией. Перенормируемость в его теории отсутствовала, так как массы промежуточных векторных бозонов вводились как дополнительные параметры. Аналогичная попытка была предпринята Саламом и Уордом [3]. Наконец, известный в настоящее время вари¬ант единой теории электрослабых взаимодействий был предложен Вайн- бергом [4] в 1967 году, а годом позднее независимо обсуждался Сала- мом [5]. Поэтому стандартную теорию электрослабых взаимодействий часто называют моделью Вайнберга-Салама (ВС) или моделью Глешоу- Вайнберга-Салама (ГВС). Различие между слабым и электромагнитным взаимодействиями в модели ГВС [4, 5] связывалось со спонтанным нарушением калибровочной симметрии, приводящем к “мягкому” включению массовых членов для промежуточных бозонов W± и Z0 за счет механиз¬ма Хиггса [6]. Но поскольку в 1967 году о перенормируемости подобных теорий бало известно мало, возобновление необычайного внимания к модели ГВС отмечается после того, как т’Хофтом была доказана перенор-мируемость теорий со спонтанно нарушенной симметрией [7, 8].
Согласно теории ГВС слабое взаимодействие не является контактным, как это предполагал Ферми [9], а происходит путем обмена промежуточными векторными бозонами (W +, W-, Z0) - тяжелыми частицами со спином 1. При этом W±-бозоны осуществляют взаимодействие заряжен¬ных токов, а Z0-бозон - нейтральных. В стандартной теории три промежуточных бозона и фотон являются квантами так называемых калибровочных векторных полей. Собственно модель ГВС описывала лишь слабые взаимодействия лептонов, но плодотворность теоретических идей, лежащих в ее основе, позволила без особых затруднений включить в нее и слабые взаимодействия кварков.
Первое подтверждение модели ГВС было получено в 1973 году в связи с открытием слабых нейтральных токов в реакции упругого рассеяния мюонных нейтрино на протонах [10], а в 1976 году нейтральные слабые токи были обнаружены в чисто лептонных процессах vMe- ^ e-, VMe- ^ e-, Vee- ^ vee- [11].
Вторым подтверждением единой теории электрослабых взаимодействий стало открытие в 1974 году первого тяжелого кварка (очарованный c-кварк) [12, 13], окончательно утвердившее в правах гражданства кварковую модель. Это окрытие явилось весьма знаменательной вехой в истории физики частиц, стимулировав дальнейший существенный прогресс как теории, так и эксперимента. Важным шагом на этом пути было обнаружение в 1976 году третьего заряженного лептона т ив 1977 году пятого типа кварков - b-кварка. Эти открытия привели к замене четы-рехкварковой модели Глешоу-Иллиопулоса-Майани (ГИМ) [14] шести-кварковой Кобаяши-Маскавы (КМ) [15], предложенной еще в 1973 году для естественного включения CP-нарушения в слабые взаимодействия кварков. Окончательное экспериментальное подтверждение шестикварковой картины стандартной модели произошло весной 1994 года после открытия шестого типа кварков - экстра тяжелого t-кварка на протон- антипротонном ускорителе в FERMILAB (Батавия, США) [16, 17, 18, 19].
-7¬С предсказаниями модели ГВС согласуется также открытое в Новосибирске несохранение четности в атомных переходах [20]. Теория получи¬ла подтверждение в экспериментах, проведенных в Станфорде (США) [21] по неупругому рассеянию электронов на дейтерии, в которых также наблюдалось несохранение четности вследствие взаимодействия нейтраль¬ных токов.
В 1979 году Глешоу, Вайнберг и Салам были удостоены Нобелевской премии по физике [22, 23, 24] за создание электрослабой теории, прекрасно описывающей всю совокупность экспериментальных данных по электрослабым процессам, задолго до открытия промежуточных W±- и Z0-бозонов [25, 26, 27]. Пришедшее в 1983 году из CERN сообщение
о непосредственном наблюдении переносчиков слабых взаимодействий группами UA1 [28, 29, 30] и UA2 [31, 32] на эксперименте явилось подлинным триумфом этой теории. Запуск в 1989 году новых электрон- позитронных ускорителей LEP в ЦЕРНе и SLC в Станфорде с энергиями до 92 ГэВ в системе центра масс e+e- пар удалось с невероятной точностью определить параметры Z-бозона в процессе его прямого рождения, Более того, впервые появилась реальная возможность прощупать влияние радиационных поправок на параметры этого бозона. Последовавшая в 1996-1997 годах модификация ускорителя LEP в ЦЕРНе (энергия сталкивающихся частиц доведена до 183 ГэВ в системе центра масс) позволит также с прецезионной точностью определить параметры заряженных W-бозонов. В частности, на данный момент экспериментальные значения масс промежуточных калибровочных W±- и Z0-бозонов следующие: mW = 80.22 ± 0.26 ГэВ и mZ = 91.187 ± 0.007ГэВ [33].
Стандартная модель в ее минимальном варианте с необходимостью (следствие спонтанного нарушения симметрии) требует существования тяжелого скалярного хиггсовского бозона H. К сожалению, в отличие от промежуточных бозонов, массы которых однозначно предсказывались стандартной моделью, значение массы хиггсовского бозона остается произвольным. Исходно, при задании скалярного сектора электро-лабой теории в лагранжиан вводится два параметра Л и v [34], причем масса хиггсовского бозона есть тн = Лv. Значение параметра v четко фиксируется низкоэнергетической физикой v = (G^/2)-1/2 ~ 246 ГэВ. Указаний на величину безразмерного параметра Л при существующих энергиях пока не найдено. Из теории известно только, что очень маленькой Л быть не может: малое значение Л приведет к тому, что наш физический вакуум (при |ф| = v//2) будет нестабилен и рано или поздно спонтанно взорвется, перейдя в стабильный вакуум с |ф| =0. Исходя из этого теоретической нижней границей на массу стандартного хиггсовского бозона будет значение mH > 7.3 ГэВ [34].
На возможность объединения слабых и электромагнитных взаимодействий впервые указал Швингер [1] в 1957 году, отметивший их векторную природу. Глешоу предположил, что в искомой перенормируемой теории слабых взаимодействий должны одновременно рассматриваться и электромагнитные взаимодействия, предложив [2] модель с калибровочной
- 5-
SU(2) х U(1) симметрией. Перенормируемость в его теории отсутствовала, так как массы промежуточных векторных бозонов вводились как дополнительные параметры. Аналогичная попытка была предпринята Саламом и Уордом [3]. Наконец, известный в настоящее время вари¬ант единой теории электрослабых взаимодействий был предложен Вайн- бергом [4] в 1967 году, а годом позднее независимо обсуждался Сала- мом [5]. Поэтому стандартную теорию электрослабых взаимодействий часто называют моделью Вайнберга-Салама (ВС) или моделью Глешоу- Вайнберга-Салама (ГВС). Различие между слабым и электромагнитным взаимодействиями в модели ГВС [4, 5] связывалось со спонтанным нарушением калибровочной симметрии, приводящем к “мягкому” включению массовых членов для промежуточных бозонов W± и Z0 за счет механиз¬ма Хиггса [6]. Но поскольку в 1967 году о перенормируемости подобных теорий бало известно мало, возобновление необычайного внимания к модели ГВС отмечается после того, как т’Хофтом была доказана перенор-мируемость теорий со спонтанно нарушенной симметрией [7, 8].
Согласно теории ГВС слабое взаимодействие не является контактным, как это предполагал Ферми [9], а происходит путем обмена промежуточными векторными бозонами (W +, W-, Z0) - тяжелыми частицами со спином 1. При этом W±-бозоны осуществляют взаимодействие заряжен¬ных токов, а Z0-бозон - нейтральных. В стандартной теории три промежуточных бозона и фотон являются квантами так называемых калибровочных векторных полей. Собственно модель ГВС описывала лишь слабые взаимодействия лептонов, но плодотворность теоретических идей, лежащих в ее основе, позволила без особых затруднений включить в нее и слабые взаимодействия кварков.
Первое подтверждение модели ГВС было получено в 1973 году в связи с открытием слабых нейтральных токов в реакции упругого рассеяния мюонных нейтрино на протонах [10], а в 1976 году нейтральные слабые токи были обнаружены в чисто лептонных процессах vMe- ^ e-, VMe- ^ e-, Vee- ^ vee- [11].
Вторым подтверждением единой теории электрослабых взаимодействий стало открытие в 1974 году первого тяжелого кварка (очарованный c-кварк) [12, 13], окончательно утвердившее в правах гражданства кварковую модель. Это окрытие явилось весьма знаменательной вехой в истории физики частиц, стимулировав дальнейший существенный прогресс как теории, так и эксперимента. Важным шагом на этом пути было обнаружение в 1976 году третьего заряженного лептона т ив 1977 году пятого типа кварков - b-кварка. Эти открытия привели к замене четы-рехкварковой модели Глешоу-Иллиопулоса-Майани (ГИМ) [14] шести-кварковой Кобаяши-Маскавы (КМ) [15], предложенной еще в 1973 году для естественного включения CP-нарушения в слабые взаимодействия кварков. Окончательное экспериментальное подтверждение шестикварковой картины стандартной модели произошло весной 1994 года после открытия шестого типа кварков - экстра тяжелого t-кварка на протон- антипротонном ускорителе в FERMILAB (Батавия, США) [16, 17, 18, 19].
-7¬С предсказаниями модели ГВС согласуется также открытое в Новосибирске несохранение четности в атомных переходах [20]. Теория получи¬ла подтверждение в экспериментах, проведенных в Станфорде (США) [21] по неупругому рассеянию электронов на дейтерии, в которых также наблюдалось несохранение четности вследствие взаимодействия нейтраль¬ных токов.
В 1979 году Глешоу, Вайнберг и Салам были удостоены Нобелевской премии по физике [22, 23, 24] за создание электрослабой теории, прекрасно описывающей всю совокупность экспериментальных данных по электрослабым процессам, задолго до открытия промежуточных W±- и Z0-бозонов [25, 26, 27]. Пришедшее в 1983 году из CERN сообщение
о непосредственном наблюдении переносчиков слабых взаимодействий группами UA1 [28, 29, 30] и UA2 [31, 32] на эксперименте явилось подлинным триумфом этой теории. Запуск в 1989 году новых электрон- позитронных ускорителей LEP в ЦЕРНе и SLC в Станфорде с энергиями до 92 ГэВ в системе центра масс e+e- пар удалось с невероятной точностью определить параметры Z-бозона в процессе его прямого рождения, Более того, впервые появилась реальная возможность прощупать влияние радиационных поправок на параметры этого бозона. Последовавшая в 1996-1997 годах модификация ускорителя LEP в ЦЕРНе (энергия сталкивающихся частиц доведена до 183 ГэВ в системе центра масс) позволит также с прецезионной точностью определить параметры заряженных W-бозонов. В частности, на данный момент экспериментальные значения масс промежуточных калибровочных W±- и Z0-бозонов следующие: mW = 80.22 ± 0.26 ГэВ и mZ = 91.187 ± 0.007ГэВ [33].
Стандартная модель в ее минимальном варианте с необходимостью (следствие спонтанного нарушения симметрии) требует существования тяжелого скалярного хиггсовского бозона H. К сожалению, в отличие от промежуточных бозонов, массы которых однозначно предсказывались стандартной моделью, значение массы хиггсовского бозона остается произвольным. Исходно, при задании скалярного сектора электро-лабой теории в лагранжиан вводится два параметра Л и v [34], причем масса хиггсовского бозона есть тн = Лv. Значение параметра v четко фиксируется низкоэнергетической физикой v = (G^/2)-1/2 ~ 246 ГэВ. Указаний на величину безразмерного параметра Л при существующих энергиях пока не найдено. Из теории известно только, что очень маленькой Л быть не может: малое значение Л приведет к тому, что наш физический вакуум (при |ф| = v//2) будет нестабилен и рано или поздно спонтанно взорвется, перейдя в стабильный вакуум с |ф| =0. Исходя из этого теоретической нижней границей на массу стандартного хиггсовского бозона будет значение mH > 7.3 ГэВ [34].
В диссертации изложены результаты теоретических исследований многочастичных распадов тяжелых кваркониев и Z-бозона в рамках стандартной теории электрослабых и сильных взаимодействий. Основные результаты и выводы работы заключаются в следующем:
1. Вычислена дифференциальная вероятность четырехчастичного силь¬ого кваркглюонного распада n3S1((QQ) ^ qqgg тяжелого ортокваркония. Рассмотренный процесс идет в следующем по константе сильного взаимодействия as порядке теории возмущений по отношению к основ¬ному трехглюонному распаду n3S1(QQ) ^ 3g. Полученное выражение представлено в явно релятивистски инвариантой форме с учетом масс конечных кварков.
2. Получены функции распределения по энергиям и углам разлета как для кварков, так и для глюонов. Эти распределения анализировались в применении к четырехструйным распадам J/ф- и Y-мезонов. Указывается на проявление коллинеарного усиления в кварковом распределении во всех четырехчастичных кваркглюонных распадах за исключением одного Y ^ ccgg, где эффект коллинеаризации кварков полностью отсут¬ствует как следствие влияния достаточно большой относительной массы c-кварка в этом распаде. Также указывается на наличие инфракрасного усиления как в кварковом, так и в глюонном распределениях.
3. Вычислены амплитуды и дифференциальные вероятности трехглюонного и кваркглюонного распадов n1S0(QQ) ^ 3g,qqg тяжелого паракваркония, идущих в следующем по as порядке теории возмущений по отношению к основному двухглюонному распаду n1So((QQ) ^ 2g. Полученные выражения представлены в компактной форме.
4.
1. Вычислена дифференциальная вероятность четырехчастичного силь¬ого кваркглюонного распада n3S1((QQ) ^ qqgg тяжелого ортокваркония. Рассмотренный процесс идет в следующем по константе сильного взаимодействия as порядке теории возмущений по отношению к основ¬ному трехглюонному распаду n3S1(QQ) ^ 3g. Полученное выражение представлено в явно релятивистски инвариантой форме с учетом масс конечных кварков.
2. Получены функции распределения по энергиям и углам разлета как для кварков, так и для глюонов. Эти распределения анализировались в применении к четырехструйным распадам J/ф- и Y-мезонов. Указывается на проявление коллинеарного усиления в кварковом распределении во всех четырехчастичных кваркглюонных распадах за исключением одного Y ^ ccgg, где эффект коллинеаризации кварков полностью отсут¬ствует как следствие влияния достаточно большой относительной массы c-кварка в этом распаде. Также указывается на наличие инфракрасного усиления как в кварковом, так и в глюонном распределениях.
3. Вычислены амплитуды и дифференциальные вероятности трехглюонного и кваркглюонного распадов n1S0(QQ) ^ 3g,qqg тяжелого паракваркония, идущих в следующем по as порядке теории возмущений по отношению к основному двухглюонному распаду n1So((QQ) ^ 2g. Полученные выражения представлены в компактной форме.
4.



