Предоставляется в ознакомительных и исследовательских целях
Об итерационных методах решения операторных уравнений второго рода
Представленный материал является образцом учебного исследования, примером структуры и содержания учебного исследования по заявленной теме. Размещён исключительно в информационных и ознакомительных целях.
Workspay.ru оказывает информационные услуги по сбору, обработке и структурированию материалов в соответствии с требованиями заказчика.
Размещение материала не означает публикацию произведения впервые и не предполагает передачу исключительных авторских прав третьим лицам.
Материал не предназначен для дословной сдачи в образовательные организации и требует самостоятельной переработки с соблюдением законодательства Российской Федерации об авторском праве и принципов академической добросовестности.
Авторские права на исходные материалы принадлежат их законным правообладателям. В случае возникновения вопросов, связанных с размещённым материалом, просим направить обращение через форму обратной связи.
📋 Содержание (образец)
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
§1. Метод последовательных приближений
§3. Метод однопараметрического итеративного агрегирования решения линейных операторных уравнений вида x = Ax + f, где оператор A - матрица n - го порядка 21
§4. Метод однопараметрического итеративного агрегирования решения нелинейных операторных уравнений вида x= F(x) + f, где F(x) - нелинейный оператор 27
ГЛАВА 2. Построение приближений, сходящихся к спектральному радиусу и собственному вектору линейного оператора 32
§5. Построение приближений, сходящихся к спектральному радиусу линейного оператора 32
§6. Построение приближений, сходящихся к собственному вектору линейного оператора 41
ГЛАВА 3. Развитие методов построения приближений, сходящихся к точному решению операторного уравнения вида x = Ax+ f 56
§7. Об одном итерационном методе решения системы линейных алгебраических уравнений вида x = Ax + fс квадратной матрицей A , в случае, когда спектральный радиус матрицы A, больше чем единица 56
§8. Получение двусторонних оценок точного решения x*операторного уравнения вида x= Ax+ f, в случае, когда спектральный радиус опера¬тора Aне обязательно меньше единицы
§11. Об одном варианте метода ускорения сходимости монотонных приближений к решению уравнения вида x = Ax+ f 93
§12. Об одном варианте метода Зейделя 100
ЗАКЛЮЧЕНИЕ 112
ЛИТЕРАТУРА 114
ПРИЛОЖЕНИЕ
📖 Введение (образец)
x= Ax+ f (1)
с линейным или нелинейным оператором А, действующим в банаховом пространстве Е, и свободным членом fиз этого пространства.
Большое практическое значение приобретает возможность строить приближения unи, соответственно, vnк решению x*операторного уравнения вида (1), такие что
Un Х Vn
При этом, оказывается, параллельно решаются две важные задачи теории приближенных методов решения операторных уравнений - задача об оценке погрешности приближенного решения, а также задача об априорной оценке относительной погрешности приближенного решения.
Использование современных ЭВМ открывает широкие возможности для решения таких задач. Математическое моделирование стало активно внедряться в практику научных и прикладных разработок при исследовании сложных явлений и процессов, происходящих в экономике. Лишь с помощью современных ЭВМ удается проводить численное моделирование достаточно сложных экономических процессов.
Актуальность проблемы. Балансовая модель производства является одной из наиболее простых математических моделей. Она записывается в виде системы уравнений, каждое из которых выражает требование равенства (баланса) между количеством продукции, производимой отдельным экономическим объектом, и совокупной потребности в этом продукте. Отсюда происходит название модели.
Впервые балансовые модели начали использоваться в СССР в 20-х годах. В более или менее законченном виде теория балансовых моделей была разработана американским ученым В.В. Леонтьевым в середине 30-х годов. Однако в те поды ни уровень развития математической науки, ни качество вычислительной техники не позволили широко распространить балансовый метод.
За разработку и внедрение в практику метода межотраслевого баланса группа советских экономистов под руководством академика А.Н. Ефимова в 1968 году была удостоена Государственной премии СССР. В настоящее время большое количество работ посвящается этой модели и ее применению для решения различных задач. Такой интерес к балансовой модели определяется тем, что, как оказалось, эта модель хорошо отображает многие существенные особенности современного производства и в то же время легко поддается расчету. Во многих странах мира балансовый метод используется для экономического анализа, планирования и прогнозирования.
В связи с внедрением ЭВМ в научные разработки, значительно повысился интерес к различным численным методам и алгоритмам, реализация которых граничит с проведением вычислительного эксперимента. Потребность в таком под¬ходе к решению задач математической экономики диктуется все усложняющимися запросами практики, а также связана с попыткой создания более рациональных и более общих теоретических моделей для изучения сложных экономических явлений.
Цели работы - приближенное решение операторных уравнений вида (1) в случаях, когда спектральный радиус p(A)оператора Aне обязательно меньше единицы; построение итерационных последовательностей сходящихся к решению уравнения (1), к собственным значениям и собственным векторам оператора A; разработка новых методов, повышающих скорость сходимости итераций к решению уравнения (1); разработка соответствующего программного обеспечения, позволяющего реализовать предложенные методы.
Научная новизна результатов работы. Развитие теории линейных и нелинейных операторов, действующих в полуупорядоченных банаховых пространствах. Так, например, предложены развития методов решения операторных уравнений вида (1) в случаях, когда у оператора Aспектральный радиус r(A) не обязательно меньше единицы. Предложен метод построения двусторонних оценок точного решения х* операторного уравнения вида (1) в случае, когда спектральный радиус оператора Aне обязательно меньше единицы. Предложены варианты методов, позволяющие строить приближения к решению уравнений вида (1), обладающие высокой скоростью сходимости. Разработано программное обеспечение на языке программирования TURBO PASCAL, реализующее предложенные итерационные методы.
Достоверность результатов работы вытекает из математической строгости постановки и решения исследуемых задач, а также из совпадения ряда полученных результатов в частных случаях с известными в литературе.
На защиту выносятся следующие положения:
- итерационный метод решения системы линейных алгебраических уравнений вида (1) с квадратной матрицей A, в случае, когда наибольшее по модулю собственное значение матрицы A, больше чем единица;
- методы получения двусторонних оценок точного решения x* операторного уравнения вида (1), в случае, когда спектральный радиус оператора Aне обязательно меньше единицы, а также подходы к уточнению полученных оценок;
- синтез методов ускорения сходимости монотонных приближений к решению x* уравнения вида (1) и однопараметрического итеративного агрегирования;
- метод ускорения сходимости монотонных приближений к решению уравнения вида (1), в случае выбора в качестве начальных приближений векторов, которые ограничивают точное решение x*уравнения вида (1) «сверху« и «снизу»;
- вариант метода Зейделя, позволяющий строить приближения, сходящиеся к точному решению x*уравнения (1) с помощью метода ускорения сходимости.
Структура и объем диссертации. Диссертация состоит из введения и трех глав, заключения, списка литературы и приложения. В ней принята сквозная нумерация параграфов, для утверждений и формул введена двойная нумерация, включающая номер параграфа и порядковый номер утверждения или формулы в нем. Диссертация изложена на 167 страницах, список использованной литературы содержит 82 наименования.
✅ Заключение (образец)
1. Разработан и апробирован на большом количестве примеров итерационный метод решения системы линейных алгебраических уравнений вида x= Ax+ fс квадратной матрицей A, в случае, когда наибольшее по модулю собственное значение матрицы A, больше чем единица.
2. Предложен метод получения двусторонних оценок точного решения x*операторного уравнения вида x= Ax+ f, в случае, когда спектральный радиус не обязательно меньше единицы, а также подходы к уточнению полученных оценок. Метод проиллюстрирован соответствующими примерами.
3. Получен синтез методов ускорения сходимости монотонных приближений к решению x*уравнения вида x= Ax+ fи однопараметрического итеративного агрегирования.
4. Предложен вариант метода ускорения сходимости монотонных приближений к решению уравнения вида x= Ax+ f, в котором упрощена задача поиска начальных приближений.
5. Разработан и апробирован на большом количестве примеров вариант метода Зейделя, позволяющий строить двусторонние приближения к точному решению уравнения вида x= Ax+ f.
6. Составлена библиотека программ на языке программирования TURBO PASCAL, которая позволяет реализовывать полученные в данной работе методы и алгоритмы.
Таким образом:
- Разработаны новые методы решения операторных уравнений, описывающих экономические модели (модель межотраслевого баланса), обладающих высокой скоростью сходимости последовательностей к точному решению данных уравнений, а также способностью сходится к точному решению даже в тех случаях, когда спектральный радиус оператора больше единицы.
- Разработан комплекс программ на языке программирования TURBO PASCAL, реализующих эти алгоритмы.



