ВРАЩЕНИЕ ЗЕМЛИ: АНАЛИЗ ВАРИАЦИЙ И ИХ ПРОГНОЗИРОВАНИЕ
|
Содержание
Введение 4
1 Ознакомительная часть 11
1.1 Исторический обзор 11
1.1.1 История развития взглядов на вращение Земли 11
1.1.2 Развитие служб наблюдений в XX веке 25
1.1.3 Деятельность Международной службы вращения Земли .... 33
1.2 Параметры вращения Земли 48
2 Описание основных моделей 55
2.1 Подходы к моделированию 55
2.2 Анализ временных рядов 62
2.2.1 Спектральный анализ 62
2.2.2 Вейвлет-анализ 70
2.2.3 Сингулярный спектральный анализ (ССА) 75
2.3 Регрессионное моделирование и нейронные сети 79
2.3.1 Авторегрессионная модель 79
2.3.2 Средняя квадратическая коллокация 84
2.3.3 Нейронные сети (НС) 86
2.4 Динамическое моделирование 97
2.4.1 Дифференциальные уравнения и динамические системы 97
2.4.2 Динамическая модель вращения Земли 104
2.4.3 Фильтр Калмана 106
2.4.4 Регуляризация 109
3 Результаты исследований 112
3.1 Высокочастотные вариации во вращении Земли по РСДБ и GPS наблюдениям 112
3.1.1 Наблюдательные данные GPS 112
3.1.2 Модель приливных вариаций Рея 115
3.1.3 Наблюдательные данные РСДБ 117
3.1.4 Об одном эффекте интерполяции 118
3.2 Анализ отклонений теорий нутации ZP2003 и МАС2000 от РСДБ
наблюдений 119
3.2.1 О теориях нутации 119
3.2.2 Структурные исследования 121
3.2.3 Спектральные исследования 125
3.2.4 Обсуждение расхождений 128
3.3 Вращение Земли и сейсмичность 130
3.3.1 Сопоставление сейсмических данных и вращения Земли 130
3.3.2 Вращение Земли и землетрясение в Индийском регионе 26
декабря 2004 г 132
3.3.3 Анализ наблюдательных данных 134
3.4 Спектральные исследования и прогноз ПВЗ 137
3.4.1 Спектральные исследования 137
3.4.2 Методика прогноза 145
3.4.3 Метод ССА и вейвлет-прогноза с использованием НС 149
3.5 Динамическое моделирование 151
3.5.1 Восстановление возбуждающих функций по наблюдениям .... 151
3.5.2 Прогнозирование возбуждающих функций 157
3.5.3 Прогнозирование движения полюса фильтром Калмана 158
Заключение 160
Приложение 164
А Анализ сигналов с использованием аудио-программ 165
В Использованные сокращения 167
Список литературы 171
Введение 4
1 Ознакомительная часть 11
1.1 Исторический обзор 11
1.1.1 История развития взглядов на вращение Земли 11
1.1.2 Развитие служб наблюдений в XX веке 25
1.1.3 Деятельность Международной службы вращения Земли .... 33
1.2 Параметры вращения Земли 48
2 Описание основных моделей 55
2.1 Подходы к моделированию 55
2.2 Анализ временных рядов 62
2.2.1 Спектральный анализ 62
2.2.2 Вейвлет-анализ 70
2.2.3 Сингулярный спектральный анализ (ССА) 75
2.3 Регрессионное моделирование и нейронные сети 79
2.3.1 Авторегрессионная модель 79
2.3.2 Средняя квадратическая коллокация 84
2.3.3 Нейронные сети (НС) 86
2.4 Динамическое моделирование 97
2.4.1 Дифференциальные уравнения и динамические системы 97
2.4.2 Динамическая модель вращения Земли 104
2.4.3 Фильтр Калмана 106
2.4.4 Регуляризация 109
3 Результаты исследований 112
3.1 Высокочастотные вариации во вращении Земли по РСДБ и GPS наблюдениям 112
3.1.1 Наблюдательные данные GPS 112
3.1.2 Модель приливных вариаций Рея 115
3.1.3 Наблюдательные данные РСДБ 117
3.1.4 Об одном эффекте интерполяции 118
3.2 Анализ отклонений теорий нутации ZP2003 и МАС2000 от РСДБ
наблюдений 119
3.2.1 О теориях нутации 119
3.2.2 Структурные исследования 121
3.2.3 Спектральные исследования 125
3.2.4 Обсуждение расхождений 128
3.3 Вращение Земли и сейсмичность 130
3.3.1 Сопоставление сейсмических данных и вращения Земли 130
3.3.2 Вращение Земли и землетрясение в Индийском регионе 26
декабря 2004 г 132
3.3.3 Анализ наблюдательных данных 134
3.4 Спектральные исследования и прогноз ПВЗ 137
3.4.1 Спектральные исследования 137
3.4.2 Методика прогноза 145
3.4.3 Метод ССА и вейвлет-прогноза с использованием НС 149
3.5 Динамическое моделирование 151
3.5.1 Восстановление возбуждающих функций по наблюдениям .... 151
3.5.2 Прогнозирование возбуждающих функций 157
3.5.3 Прогнозирование движения полюса фильтром Калмана 158
Заключение 160
Приложение 164
А Анализ сигналов с использованием аудио-программ 165
В Использованные сокращения 167
Список литературы 171
Планета Земля является объектом исследования многих наук: геофизики, геодезии, географии и других, названия всех этих наук берут начало от древнегреческого слова “Гт”1. Но только одна наука, название которой происходит от латинского слова “Astrum” , т.е. астрономия рассматривает Землю как-бы извне, глобально и целостно, как одну из планет во Вселенной. В наше время, которое принято именовать “началом третьего тысячелетия”, нередко можно встретить исследователей планет Солнечной системы [1],[2],[3] и их спутников [4], а также внесолнечных планет и релятивистских объектов - пульсаров [5],[6], которые используют теории, созданные в ходе исследования Земли, прошедшие бескомпромиссный отбор и подтверждение наблюдениями. Именно такие теории могут служить надежной опорой при исследовании еще неизвестного и таинственного в природе, в меру общности ее законов. Свои представления о мире человек приобретает сначала в своей колыбели, затем во дворе, на своей Родине, на своей Земле. И лишь исходя из них, отталкиваясь от Земли он может перейти к исследованиям Неба. Пока человечество не окажется непосредственно у других звезд, лишь результаты исследований
Предметом нашего исследования будет вращение Земли, и мы постараемся показать, что и в этой области вместе с использованием богатого наследия, оставшегося нам от наших предшественников, можно с успехом использовать методы, развивающиеся в наше время и открывающие новые замечательные перспективы.
Вращение Земли отражает множество астрономических и геофизических явлений, происходящих на поверхности Земли, в ее недрах, в атмосфере и океанах, а также в ближнем Космосе. Так или иначе, все явления, приводящие к перераспределению масс оболочек Земли и момента импульса между ними, влияют на вращение Земли. Среди них - вариации приливного потенциала, обусловленного действием небесных тел, изменения момента импульса ветров, течений, таяние ледников, влияние годового цикла возбуждения атмосферы, ураганного явления El Nino, процессы в мантии и ядре, землетрясения и многое другое [7],[8],[9],[10].
Развитие средств наблюдений в XX веке: радиоинтерферометрии со сверхдлинными базами (РСДБ) [11], лазерной локации искусственных спутников (ЛЛС) и Луны (ЛЛЛ) [12],[13], спутниковых систем GPS и Глонасс [14], - привело к ситуации, когда точность наблюдений быстрыми темпами ушла вперед и опередила точность моделирования. Возникла необходимость совершенствования теорий. Моделирование неравномерностей вращения Земли во многом зависит от уровня представлений о выше перечисленных процессах, от состояния их мониторинга, а также от результативности используемых математических методов. Для организации исследований, планирования наблюдений и систематизации методов в 1985 г. учреждена Международная служба вращения Земли (МСВЗ)[15].
Развитие математических методов и вычислительных средств, происходящее стремительными темпами, позволяет по-новому подойти к анализу и моделированию. Те шаги, которые предприняты в последние 20-30 лет в областях спектрального анализа [16],[17], нелинейного моделирования [18],[19], оптимизации [20],[21], позволяют применить совершенно новые подходах к исследованию вращения Земли, нежели 30-50 лет назад. Важным фактором является то, что наблюдательный материал по вращению Земли накоплен за достаточно длительный интервал времени, охватишающий более века. Особенно интересным в связи с этим представляется сравнение HOBBIX ПОДХОДОВ с применявшимися ранее.
Взяв на вооружение методы вейвлет-анализа (22],(23],[24],[16], сингулярного спектрального анализа [25], нейронные сети [26], мы попытаемся получить новые резулвтаты как относительно вращения Земли, так и использования этих методов, а также сопоставить их с классическими методами Фурве-анализа [27],[28], линейными регрессионными методами оценки параметров [30], [29], методами статистического [31],[32] и динамического моделирования [33],[34].
В последние десятилетия к точности астрометрических наблюдений, космической навигации и систем глобального позиционирования (СГП), предназначенных для определения местоположения на Земле и в Космосе, предъявляются очень высокие требования, которые не могли бы удовлетворены в отсутствие BBICOKOTOHHBIXметодов преобразований между фундаментальными системами координат [35]. В матрицы преобразований между земной и небесной системами координат входят параметрах вращения Земли (ПВЗ) [36]. В связи с этим, моделирование и прогнозирование вариаций во вращении Земли приобретает непосредственную практическую ценности.
Цели исследования
В диссертационной работе предпринято исследование вращения Земли, при этом основное внимание уделено вопросам прогнозирования вращения Земли и вычисления возбуждающих функций по наблюдениям. Ставилисв следующие основные цели:
1. Анализ высокочастотных (суточных и внутрисуточных) составляющих изменений скорости вращения планеты и положения полюса с использованием РСДБ и GPS наблюдений, обеспечивающих необходимое разрешение. Сравнение полученных этими независимыми средствами данных с целью выявления достоверных эффектов.
2. Спектральный и структурный анализ отклонений теорий прецессии и нутации МАС2000 и ZP2003 от РСДБ наблюдений. Оценка эмпирических поправок к параметрам этих теорий.
3. Оценка эффекта, который оказало на вращение Земли землетрясение, произошедшее 26 декабря 2004 г. в Индийском регионе. Анализ наблюдений в целях обнаружения этого эффекта.
4. Анализ временные рядов движения полюса и скорости вращения Земли с использованием различных методов, выявление их сходств и различий, выбор оптимального метода для анализа ПВЗ.
5. Сравнение и усовершенствование методов прогноза движения полюса Земли и скорости ее вращения.
6. Решение задачи восстановления возбуждающей функции по наблюдениям с использованием корректирующих процедур. Получение прогнозов возбуждающих функций и прогнозов траектории движения полюса с использованием фильтра Калмана.
Перейдем к рассмотрению содержания диссертационной работы, сделаем краткий обзор глав в том порядке, в каком они будут представлены.
В первом разделе первой главы мы поставили перед собой задачу познакомить читателя с историей развития взглядов на вращение Земли. Вначале мы обращаемся к древнейшим представлениям, на что исследователь современности может возразить, что это все нисколько неинтересно и не следует тратить времени на изложение ошибок прошлого, ибо сегодня, в эпоху научного прогресса, мы знаем все верней. Трудно споритв с убежденными в этом. Настроеннв1х подобным образом никто не удерживает от перехода к следующим главам. Однако, нам кажется полезным и, в некоторой степени, нравоучительным опыт прошлого. С одной стороны, он демонстрирует, сколь свойственно человеку заблуждаться, отыскивая тропу в неизвестной ему области. С другой стороны, удивительно наблюдать, как свет разума, которым наделены некоторые представители человечества по воле провидения, позволяет им двигаться по верному пути. Поучиться тому, как они это делают, всегда полезно. К тому же мы надеемся, что взыскательный читатель, видя, что и признанные умы не были ограждены от ошибок, будет более снисходителен к нашим скромным результатам.
В продолжении первой части первой главы мы рассматриваем историю служб наблюдений за вращением Земли, которые были непосредственными предшественниками ныне действующей МСВЗ. О деятельности последней также подробно рассказывается.
Во второй части первой главы поясняется, какие параметры приняты МСВЗ и Международным астрономическим союзом (МАС) для описания вращения Земли, и как выполняются преобразования между фундаментальными системами координат.
Во второй главе представлены основные используемые подходы. Они систематизированы в первом разделе.
Во втором разделе изложены методы спектрального анализа. Помимо классического Фурье-анализа и некоторых исторических пояснений к нему, представлены вейвлет-анализ и сингулярный спектральный анализ.
В третьем разделе изложены линейные регрессионные модели, среди которых - линейная регрессия и метод среднеквадратической коллокации, активно развиваемый нашими коллегами из Петербурга
Там же представлены некоторые подходы нелинейного моделирования, среди них - нелинейные регрессии и нейронные сети. Нелинейные подходы активно развиваются в наше время т.к. позволяют лучше приближать реальность.
Все разделы второй части служат для ознакомления читателя с основными подходами, использованными в исследованиях, описание хода и результатов которых вынесены в третью главу.
В первом разделе третьей главы приводятся результаты исследования вращения Земли во внутрисуточном диапазоне частот. Сопоставляются ряды РСДБ и GPS высокого разрешения. Отмечаются некоторые артефакты и приводится их возможное объяснение.
Во втором разделе мы касаемся теорий прецессии и нутации. Проводится анализ отклонений этих теорий от наблюдений, основная часть которых обусловлена свободной нутацией ядра. Вычисляются поправки к параметрам моделей.
В третьем разделе рассматривается связь вращения Земли с сейсмичностью. Оценивается эффект, во вращении Земли от землетрясения в Индийском регионе 26 декабря 2004 г., предпринимаются попытки обнаружения этого эффекта в наблюдениях.
В четвертом разделе третьей главы представлены спектральные исследования временных рядов ПВЗ и проводится сравнение методов их прогнозирования. Из нескольких методов выделяется основанный на использовании нейронных сетей, давший наиболее точные прогнозы. Здесь же рассматривается возможность совместного использованию сингулярного спектрального анализа, вейвлет-анализа и нейронных сетей для прогнозирования временных рядов.
В пятом разделе, на основе динамической модели вращения Земли, предпринимаются попытки оценивания сигнала, возбуждающего движение полюса. При этом рассматривается вопрос перевода задачи из класса некорректных в класс доступных для решения или условно-корректных задач. Полученные результаты используются для прогнозирования фильтром Калмана.
Предметом нашего исследования будет вращение Земли, и мы постараемся показать, что и в этой области вместе с использованием богатого наследия, оставшегося нам от наших предшественников, можно с успехом использовать методы, развивающиеся в наше время и открывающие новые замечательные перспективы.
Вращение Земли отражает множество астрономических и геофизических явлений, происходящих на поверхности Земли, в ее недрах, в атмосфере и океанах, а также в ближнем Космосе. Так или иначе, все явления, приводящие к перераспределению масс оболочек Земли и момента импульса между ними, влияют на вращение Земли. Среди них - вариации приливного потенциала, обусловленного действием небесных тел, изменения момента импульса ветров, течений, таяние ледников, влияние годового цикла возбуждения атмосферы, ураганного явления El Nino, процессы в мантии и ядре, землетрясения и многое другое [7],[8],[9],[10].
Развитие средств наблюдений в XX веке: радиоинтерферометрии со сверхдлинными базами (РСДБ) [11], лазерной локации искусственных спутников (ЛЛС) и Луны (ЛЛЛ) [12],[13], спутниковых систем GPS и Глонасс [14], - привело к ситуации, когда точность наблюдений быстрыми темпами ушла вперед и опередила точность моделирования. Возникла необходимость совершенствования теорий. Моделирование неравномерностей вращения Земли во многом зависит от уровня представлений о выше перечисленных процессах, от состояния их мониторинга, а также от результативности используемых математических методов. Для организации исследований, планирования наблюдений и систематизации методов в 1985 г. учреждена Международная служба вращения Земли (МСВЗ)[15].
Развитие математических методов и вычислительных средств, происходящее стремительными темпами, позволяет по-новому подойти к анализу и моделированию. Те шаги, которые предприняты в последние 20-30 лет в областях спектрального анализа [16],[17], нелинейного моделирования [18],[19], оптимизации [20],[21], позволяют применить совершенно новые подходах к исследованию вращения Земли, нежели 30-50 лет назад. Важным фактором является то, что наблюдательный материал по вращению Земли накоплен за достаточно длительный интервал времени, охватишающий более века. Особенно интересным в связи с этим представляется сравнение HOBBIX ПОДХОДОВ с применявшимися ранее.
Взяв на вооружение методы вейвлет-анализа (22],(23],[24],[16], сингулярного спектрального анализа [25], нейронные сети [26], мы попытаемся получить новые резулвтаты как относительно вращения Земли, так и использования этих методов, а также сопоставить их с классическими методами Фурве-анализа [27],[28], линейными регрессионными методами оценки параметров [30], [29], методами статистического [31],[32] и динамического моделирования [33],[34].
В последние десятилетия к точности астрометрических наблюдений, космической навигации и систем глобального позиционирования (СГП), предназначенных для определения местоположения на Земле и в Космосе, предъявляются очень высокие требования, которые не могли бы удовлетворены в отсутствие BBICOKOTOHHBIXметодов преобразований между фундаментальными системами координат [35]. В матрицы преобразований между земной и небесной системами координат входят параметрах вращения Земли (ПВЗ) [36]. В связи с этим, моделирование и прогнозирование вариаций во вращении Земли приобретает непосредственную практическую ценности.
Цели исследования
В диссертационной работе предпринято исследование вращения Земли, при этом основное внимание уделено вопросам прогнозирования вращения Земли и вычисления возбуждающих функций по наблюдениям. Ставилисв следующие основные цели:
1. Анализ высокочастотных (суточных и внутрисуточных) составляющих изменений скорости вращения планеты и положения полюса с использованием РСДБ и GPS наблюдений, обеспечивающих необходимое разрешение. Сравнение полученных этими независимыми средствами данных с целью выявления достоверных эффектов.
2. Спектральный и структурный анализ отклонений теорий прецессии и нутации МАС2000 и ZP2003 от РСДБ наблюдений. Оценка эмпирических поправок к параметрам этих теорий.
3. Оценка эффекта, который оказало на вращение Земли землетрясение, произошедшее 26 декабря 2004 г. в Индийском регионе. Анализ наблюдений в целях обнаружения этого эффекта.
4. Анализ временные рядов движения полюса и скорости вращения Земли с использованием различных методов, выявление их сходств и различий, выбор оптимального метода для анализа ПВЗ.
5. Сравнение и усовершенствование методов прогноза движения полюса Земли и скорости ее вращения.
6. Решение задачи восстановления возбуждающей функции по наблюдениям с использованием корректирующих процедур. Получение прогнозов возбуждающих функций и прогнозов траектории движения полюса с использованием фильтра Калмана.
Перейдем к рассмотрению содержания диссертационной работы, сделаем краткий обзор глав в том порядке, в каком они будут представлены.
В первом разделе первой главы мы поставили перед собой задачу познакомить читателя с историей развития взглядов на вращение Земли. Вначале мы обращаемся к древнейшим представлениям, на что исследователь современности может возразить, что это все нисколько неинтересно и не следует тратить времени на изложение ошибок прошлого, ибо сегодня, в эпоху научного прогресса, мы знаем все верней. Трудно споритв с убежденными в этом. Настроеннв1х подобным образом никто не удерживает от перехода к следующим главам. Однако, нам кажется полезным и, в некоторой степени, нравоучительным опыт прошлого. С одной стороны, он демонстрирует, сколь свойственно человеку заблуждаться, отыскивая тропу в неизвестной ему области. С другой стороны, удивительно наблюдать, как свет разума, которым наделены некоторые представители человечества по воле провидения, позволяет им двигаться по верному пути. Поучиться тому, как они это делают, всегда полезно. К тому же мы надеемся, что взыскательный читатель, видя, что и признанные умы не были ограждены от ошибок, будет более снисходителен к нашим скромным результатам.
В продолжении первой части первой главы мы рассматриваем историю служб наблюдений за вращением Земли, которые были непосредственными предшественниками ныне действующей МСВЗ. О деятельности последней также подробно рассказывается.
Во второй части первой главы поясняется, какие параметры приняты МСВЗ и Международным астрономическим союзом (МАС) для описания вращения Земли, и как выполняются преобразования между фундаментальными системами координат.
Во второй главе представлены основные используемые подходы. Они систематизированы в первом разделе.
Во втором разделе изложены методы спектрального анализа. Помимо классического Фурье-анализа и некоторых исторических пояснений к нему, представлены вейвлет-анализ и сингулярный спектральный анализ.
В третьем разделе изложены линейные регрессионные модели, среди которых - линейная регрессия и метод среднеквадратической коллокации, активно развиваемый нашими коллегами из Петербурга
Там же представлены некоторые подходы нелинейного моделирования, среди них - нелинейные регрессии и нейронные сети. Нелинейные подходы активно развиваются в наше время т.к. позволяют лучше приближать реальность.
Все разделы второй части служат для ознакомления читателя с основными подходами, использованными в исследованиях, описание хода и результатов которых вынесены в третью главу.
В первом разделе третьей главы приводятся результаты исследования вращения Земли во внутрисуточном диапазоне частот. Сопоставляются ряды РСДБ и GPS высокого разрешения. Отмечаются некоторые артефакты и приводится их возможное объяснение.
Во втором разделе мы касаемся теорий прецессии и нутации. Проводится анализ отклонений этих теорий от наблюдений, основная часть которых обусловлена свободной нутацией ядра. Вычисляются поправки к параметрам моделей.
В третьем разделе рассматривается связь вращения Земли с сейсмичностью. Оценивается эффект, во вращении Земли от землетрясения в Индийском регионе 26 декабря 2004 г., предпринимаются попытки обнаружения этого эффекта в наблюдениях.
В четвертом разделе третьей главы представлены спектральные исследования временных рядов ПВЗ и проводится сравнение методов их прогнозирования. Из нескольких методов выделяется основанный на использовании нейронных сетей, давший наиболее точные прогнозы. Здесь же рассматривается возможность совместного использованию сингулярного спектрального анализа, вейвлет-анализа и нейронных сетей для прогнозирования временных рядов.
В пятом разделе, на основе динамической модели вращения Земли, предпринимаются попытки оценивания сигнала, возбуждающего движение полюса. При этом рассматривается вопрос перевода задачи из класса некорректных в класс доступных для решения или условно-корректных задач. Полученные результаты используются для прогнозирования фильтром Калмана.
Современная астрометрия и геодезия также не могут обойти вниманием проблем, связанных с особенностями вращения Земли, поскольку ПВЗ выступают параметрами преобразований между фундаментальными системами координат, а точность, необходимая при проведении астрометрических измерений, в космической навигации и глобальном позиционировании, очень высока. Развитие в XX в. таких средств наблюдений, как РСДБ, ЛЛЛ, ЛЛС, GPS, DORIS вывело точность наблюдений за вращением Земли на миллиметровый уровень, возникла необходимость в совершенствовании теорий.
В проведенном исследовании были рассмотрены тонкие эффекты, лежащие на пределе точности современных средств наблюдений за скоростью вращения планеты, и движением полюсов, которые не всегда удается моделировать современными теориями. Основное внимание сосредоточено на методах прогнозирования и восстановления возбуждающих функций по наблюдениям, при этом внимание уделено также поиску причин чандлеровского колебания полюса.
Математические методы, развивающиеся стремительными темпами вместе с развитием вычислительной техники, открывают удивительные перспективы перед исследователями. Развитие методов вейвлет-анализа, сингулярного спектрального анализа, нелинейного моделирования, нейронных сетей, популяционных методов оптимизации позволяют по-новому подойти к исследованию вращения Земли, получить новые результаты и сравнить их с полученными классическими методами Фурье-анализа, регрессионными статистическими методами, методами динамического моделирования. В работе предприняты попытки сравнения различных методов в аспекте их применимости к анализу и прогнозу рядов ПВЗ, сделаны предложения по их совместному использованию.
Особое внимание уделено динамическому моделированию, которое служит для “описания потоков причинно-следственных связей из прошлого в будущее” [73]. Задачи восстановления воздействия, приводящего к наблюдаемой траектории объекта зачастую не имеют однозначного решения и являются некорректно поставленными. К этому классу относится и задача восстановления возбуждающих функций по наблюдениям, рассмотрению которой посвящен раздел 3.5. Предприняты попытки использования корректирующих сглаживающих процедур для решения этой задачи.
В ходе исследования перед нашим взором предстало множество вопросов, решение которых представляется интересным в будущем. Так, особо интересным может быть применение нелинейных регрессионных методов анализа к рядам ПВЗ, использование методов динамического моделирования нелинейных объектов для изучения вращения Земли, дальнейшая разработка корректирующих сглаживающих процедур для решения обратных задач с применением методов вейвлет-анализа. Возлагается надежда на новые точные данные, которые могут существенно помочь решению вопроса о природе чандлеровского колебания, уточнению моделей высокочастотных составляющих вариаций скорости вращения Земли и движения полюса, построению моделей свободной нутации ядра и многого другого.
Основные результаты работы
В результате выполненных исследований удалось установить
• наличие артефактов в оценках суточных и полусуточных составляющих вариаций ПВЗ, полученных по GPS наблюдениям;
• нецелесообразность введения эмпирических поправок в передаточные функции теорий нутации ZP2003 и МАС2000 с целью улучшения их согласия с наблюдениями;
• невозможность с достоверностью лучше 3а выявить по имеющимся наблюдениям эффект во вращении Земли, вызванный землетрясением 24 декабря 2004 г. в Индийском регионе;
выдвинуты предположения
• о природе артефактов в высокочастотной области спектра рядов GPS-оценок ПВЗ;
• о том, что землетрясением 24 декабря 2004 г. в Индийском регионе было спровоцировано Лунно-Солнечным приливным воздействием;
• метод для прогнозирования временных рядов, основанный на совместном использовании сингулярного спектрального анализа или вейвлет-анализа и нейронных сетей;
• окно, разработанное В.Л. Пантелеевым, обладающее свойствами вейвлет-функции, для непрерывного вейвлет-анализа;
• возможности человеческого уха по анализу звукового сигнала, преобразуя временные ряды в звуковые сигналы, находящиеся в диапазоне восприятия сделаны выводы
• о важной роли для изучения внутрисуточных вариаций ПВЗ GPS- наблюдений, наряду с PC ДБ-наблюдениями, увеличение числа которых крайне желательно;
• о необходимости совершенствования моделей нелинейных эффектов в теориях прецессии и нутации с целью улучшения их согласия с наблюдениями;
• о желательности использования корректирующих сглаживающих процедур при восстановлении возбуждающих функций по наблюдениям вращения Земли;
в работе также получены
• прогнозы движения полюса и скорости ее вращения с использованием АР, СКК, НС, предложенного метода прогноза и фильтра Калмана, исходя из которых следует ожидать достижения секундного рассогласования между шкалами времени UT1 и UTC в 2006 г. и уменьшения амплитуды чандлеровского колебания в 2010-2020 г.
В проведенном исследовании были рассмотрены тонкие эффекты, лежащие на пределе точности современных средств наблюдений за скоростью вращения планеты, и движением полюсов, которые не всегда удается моделировать современными теориями. Основное внимание сосредоточено на методах прогнозирования и восстановления возбуждающих функций по наблюдениям, при этом внимание уделено также поиску причин чандлеровского колебания полюса.
Математические методы, развивающиеся стремительными темпами вместе с развитием вычислительной техники, открывают удивительные перспективы перед исследователями. Развитие методов вейвлет-анализа, сингулярного спектрального анализа, нелинейного моделирования, нейронных сетей, популяционных методов оптимизации позволяют по-новому подойти к исследованию вращения Земли, получить новые результаты и сравнить их с полученными классическими методами Фурье-анализа, регрессионными статистическими методами, методами динамического моделирования. В работе предприняты попытки сравнения различных методов в аспекте их применимости к анализу и прогнозу рядов ПВЗ, сделаны предложения по их совместному использованию.
Особое внимание уделено динамическому моделированию, которое служит для “описания потоков причинно-следственных связей из прошлого в будущее” [73]. Задачи восстановления воздействия, приводящего к наблюдаемой траектории объекта зачастую не имеют однозначного решения и являются некорректно поставленными. К этому классу относится и задача восстановления возбуждающих функций по наблюдениям, рассмотрению которой посвящен раздел 3.5. Предприняты попытки использования корректирующих сглаживающих процедур для решения этой задачи.
В ходе исследования перед нашим взором предстало множество вопросов, решение которых представляется интересным в будущем. Так, особо интересным может быть применение нелинейных регрессионных методов анализа к рядам ПВЗ, использование методов динамического моделирования нелинейных объектов для изучения вращения Земли, дальнейшая разработка корректирующих сглаживающих процедур для решения обратных задач с применением методов вейвлет-анализа. Возлагается надежда на новые точные данные, которые могут существенно помочь решению вопроса о природе чандлеровского колебания, уточнению моделей высокочастотных составляющих вариаций скорости вращения Земли и движения полюса, построению моделей свободной нутации ядра и многого другого.
Основные результаты работы
В результате выполненных исследований удалось установить
• наличие артефактов в оценках суточных и полусуточных составляющих вариаций ПВЗ, полученных по GPS наблюдениям;
• нецелесообразность введения эмпирических поправок в передаточные функции теорий нутации ZP2003 и МАС2000 с целью улучшения их согласия с наблюдениями;
• невозможность с достоверностью лучше 3а выявить по имеющимся наблюдениям эффект во вращении Земли, вызванный землетрясением 24 декабря 2004 г. в Индийском регионе;
выдвинуты предположения
• о природе артефактов в высокочастотной области спектра рядов GPS-оценок ПВЗ;
• о том, что землетрясением 24 декабря 2004 г. в Индийском регионе было спровоцировано Лунно-Солнечным приливным воздействием;
• метод для прогнозирования временных рядов, основанный на совместном использовании сингулярного спектрального анализа или вейвлет-анализа и нейронных сетей;
• окно, разработанное В.Л. Пантелеевым, обладающее свойствами вейвлет-функции, для непрерывного вейвлет-анализа;
• возможности человеческого уха по анализу звукового сигнала, преобразуя временные ряды в звуковые сигналы, находящиеся в диапазоне восприятия сделаны выводы
• о важной роли для изучения внутрисуточных вариаций ПВЗ GPS- наблюдений, наряду с PC ДБ-наблюдениями, увеличение числа которых крайне желательно;
• о необходимости совершенствования моделей нелинейных эффектов в теориях прецессии и нутации с целью улучшения их согласия с наблюдениями;
• о желательности использования корректирующих сглаживающих процедур при восстановлении возбуждающих функций по наблюдениям вращения Земли;
в работе также получены
• прогнозы движения полюса и скорости ее вращения с использованием АР, СКК, НС, предложенного метода прогноза и фильтра Калмана, исходя из которых следует ожидать достижения секундного рассогласования между шкалами времени UT1 и UTC в 2006 г. и уменьшения амплитуды чандлеровского колебания в 2010-2020 г.



