Синтез композиционных аффинных сорбентов с магнитными свойствами и их технологическое использование при изготовлении чумных иммунобиологических препаратов
|
ГЛАВА 1. Обзор литературы
1.1. Синтез и исследование магнитосорбционных органокремнеземных материалов с иммобилизованными биологически
активными лигандами
1.2. Строение и свойства хитозана, как перспективного компонента для синтеза композиционных сорбентов, и медико¬биологические аспекты его применения
1.3. Культивирование микроорганизмов с применением методов их иммобилизации на сорбентах
1.4. Применение магнитных иммуносорбентов для диагностики особо опасных инфекционных заболеваний и индикации их возбудителей
ГЛАВА 2. Материалы и методы
2.1 Характеристики используемых штаммов микроорганизмов
2.2. Характеристика лабораторных животных
2.3. Способы получения антигенов чумы, выделения
специфических иммуноглобулинов, получения иммунопероксидазных коньюгатов и их контроль
2.4. Материалы для синтеза композиционных кремнеземных сорбентов и физико-химические методы их исследования
2.4.1. Химический анализ элементоксидных слоев сорбентов
2.4.2. Физико-химические методы исследования
2.5. Сублимация биопрепаратов
2.6. Статистическая обработка результатов исследования
ГЛАВА 3. Синтез композиционных магноиммуносорбентов и исследование их свойств
3.1. Синтез хитозанкремнеземных и элементосодержащих композиционных магносорбентов
3.2. Химическое модифицирование поверхности композиционных магносорбентов функциональными группами
3.3. Получение магноиммуносорбентов и иммобилизация специфических иммуноглобулинов на поверхности сорбента
ГЛАВА 4. Использование магнитоуправляемых
иммобилизованных систем для глубинного культивирования вакцинного штамма чумного микроба
4.1. Глубинное культивирование чумного микроба,
иммобилизованного на магнитных носителях
4.2. Изучение свойств чумной живой сухой вакцины,
выращенной с помощью иммобилизованного инокулята
4.3. Получение капсульного антигена (Ф1) чумного микроба
ГЛАВА 5. Иммуноферментные тест-системы для диагностики чумы и индикации ее возбудителя
Заключение
Выводы
Список использованных источников
Приложения
1.1. Синтез и исследование магнитосорбционных органокремнеземных материалов с иммобилизованными биологически
активными лигандами
1.2. Строение и свойства хитозана, как перспективного компонента для синтеза композиционных сорбентов, и медико¬биологические аспекты его применения
1.3. Культивирование микроорганизмов с применением методов их иммобилизации на сорбентах
1.4. Применение магнитных иммуносорбентов для диагностики особо опасных инфекционных заболеваний и индикации их возбудителей
ГЛАВА 2. Материалы и методы
2.1 Характеристики используемых штаммов микроорганизмов
2.2. Характеристика лабораторных животных
2.3. Способы получения антигенов чумы, выделения
специфических иммуноглобулинов, получения иммунопероксидазных коньюгатов и их контроль
2.4. Материалы для синтеза композиционных кремнеземных сорбентов и физико-химические методы их исследования
2.4.1. Химический анализ элементоксидных слоев сорбентов
2.4.2. Физико-химические методы исследования
2.5. Сублимация биопрепаратов
2.6. Статистическая обработка результатов исследования
ГЛАВА 3. Синтез композиционных магноиммуносорбентов и исследование их свойств
3.1. Синтез хитозанкремнеземных и элементосодержащих композиционных магносорбентов
3.2. Химическое модифицирование поверхности композиционных магносорбентов функциональными группами
3.3. Получение магноиммуносорбентов и иммобилизация специфических иммуноглобулинов на поверхности сорбента
ГЛАВА 4. Использование магнитоуправляемых
иммобилизованных систем для глубинного культивирования вакцинного штамма чумного микроба
4.1. Глубинное культивирование чумного микроба,
иммобилизованного на магнитных носителях
4.2. Изучение свойств чумной живой сухой вакцины,
выращенной с помощью иммобилизованного инокулята
4.3. Получение капсульного антигена (Ф1) чумного микроба
ГЛАВА 5. Иммуноферментные тест-системы для диагностики чумы и индикации ее возбудителя
Заключение
Выводы
Список использованных источников
Приложения
С 90-х годов прошлого столетия начался подъем заболеваемости чумой в мире, который продолжается и в настоящее время. Наличие обширных природных очагов на территории многих государств мира, в том числе и России, социально-экономические различия этих стран и, как следствие, различие арсеналов методов профилактики и диагностики этой инфекции и борьбы с ней, возможность антропонозного выноса чумы на неэнзоотичные территории и тому подобные факторы не позволяют надеяться на полное искоренение чумы в природе в ближайшее время (Г.Г Онищенко, А.М. Кокушкин, О.В. Кедрова и др., 1998; Г.Г. Онищенко, Б.Л. Черкасский, Ю.М. Федоров и др., 1998; Г.Г. Онищенко, 2002). После событий 11 сентября 2001 года в Нью-Йорке в одном ряду с возбудителями оспы, сибирской язвы, вирусами Эбола и Марбурга в списке наиболее вероятных и опасных агентов биотерроризма отмечен чумной микроб. Именно поэтому вопросам специфической защиты и экспрессным методам диагностики (индикации) этой инфекции уделяется столь пристальное внимание.
Одним из приоритетных научных направлений современной биотехнологии является разработка технологий на основе использования иммобилизованных форм биологических объектов, в первую очередь микроорганизмов и их метаболитов. Несмотря на большое количество работ, посвященных явлению иммобилизации, в настоящее время реализована лишь часть потенциальных возможностей данного направления.
Придание носителям биомолекул и клеток свойства магнитоуправляемости открыло новые перспективы применения иммобилизованных микробиологических систем (В.И. Ефременко, 1996; И.С. Тюменцева, 1996; Е.Н. Афанасьев, 2000).
Анализ литературных данных по синтезу биотехнологических сорбентов свидетельствует о том, что в данном направлении существует множество проблем, связанных с выбором сорбционных материалов,поиском селективных лигандов, разработкой методов фиксирования лигандов на поверхности матриц. Решение вышеуказанных проблем возможно на основе целенаправленных исследований по разработке сорбентов, обладающих высокой специфичностью к определяемым биологически активным веществам и микроорганизмам, отличающихся стабильностью в условиях присоединения лигандов, а также обеспечивающих оптимизацию в процессах сорбции и десорбции (А.В. Брыкалов, 1993; В.Б. Алесковский, 2002).
В настоящее время для практических целей медицины, биотехнологии важное значение приобретают композиционные сорбенты, содержащие в качестве основного компонента кремнезем. Данные сорбенты могут быть с успехом использованы при конструировании твердофазных тест-систем для диагностики особо опасных инфекций, что является актуальным решением проблемы для медицины и ветеринарии (И.В. Жарникова, И.С. Тюменцева, А.В. Брыкалов, 1995).
Современные технологии синтеза органокремнеземных сорбентов включают четыре направления. Первое - основано на сорбции или хемосорбции полимеров из растворов на поверхности сорбентов, имеющих определенные структурные характеристики; второе - включает синтезы сорбентов, заключающиеся в радикальной или ионной полимеризации мономеров в присутствии кремнезема; третье направление - для получения объемно-модифицированных композиционных сорбентов предусматривает поликонденсацию кремнийорганических соединений. Способ и технологические аспекты получения композиционных сорбентов, основанные на формировании пористой структуры кремнеземной матрицы в присутствии полимеров (декстран, поливиниловый спирт) формируют четвертое направление по конструированию органокремнеземных сорбентов. Многочисленные публикации авторов (М.Т. Брык, 1981; Г.В. Кудрявцев, С.М. Староверов, 1989; В.Б. Алесковский, А.Я Юффа, 1989; А.В. Брыкалов, 1993; В.Б. Алесковский, 2002) содержат информацию по достоинствам и недостаткам каждого из направлений синтеза сорбента.
Целью начального этапа исследований по диссертационной работе являлось получение ферромагнитных сорбентов, обладающих заданным составом, адсорбционными и магнитными свойствами, используемыми для проведения твердофазного иммуноанализа микроорганизмов на основе методов ИФА. Одной из ключевых задач являлось применение магнитоуправляемых сорбционных материалов для глубинного культивирования вакцинного штамма чумного микроба.
Синтез магносорбентов с высокой сорбционной емкостью проведен методом формирования пористой структуры носителя в присутствии полимера хитозана. В качестве кремнеземного компонента использован высокодисперсный непористый кремнезем - аэросил А-380. В технологии получения сорбента применялся полисахарид хитозан, представляющий собой полностью дезацетилированный продукт - поли [(1-4)- 2 амино-2- дезокси-в-Д-глюкозы].
В строении хитозана выделяют два участка: упорядоченные участки, образованные противоположно заряженными звеньями полиэлектролитной системы, и участки, чередующиеся с дефектами. Наличие в хитозане двух гидроксильных и первичной аминогруппы расширяет возможности его модификации (Т.И. Тюпенко, 2001).
Технология получения хитозанкремнеземных магносорбентов включала восемь стадий. Стадии технологии 1-5 характеризуют процесс получения композиционного магносоорбента, а последующие стадии 6-8 - отражают этапы модифицирования поверхности сорбента функциональными группами: методом окисления, бензохиноновым, а также процессы иммобилизации антигена или антител с последующей стабилизацией КМИС. Технологии синтеза магноиммуносорбента подробно представлены в главе 3 диссертации.
В качестве магнитного компонента при синтезе применялся магнетит (Fe3O4), а также разработан способ получения магносорбента путем введения на стадии получения гидрогеля оксалата железа (II).
Структура композиционных сорбентов представлена корпускулярной системой, которая состоит из частиц кремнезема, покрытых полимером хитозана. Размер корпускул определяет величину удельной поверхности, а плотность их упаковки - объем и радиус пор. Механизм образования пористых хитозанкремнеземных магносорбентов можно представить, как сложный процесс, сопровождающийся формированием корпускулярной структуры кремнеземного остова из непористых частиц аэросила А-380, и включением в него органического полимера хитозана и магнетита.
При сравнительном анализе данных этих двух методов следует отметить, что с использованием в качестве компонента для синтеза сорбентов оксалата железа получаемые магносорбенты имеют несколько меньшую удельную поверхность и большее значение объема пор. Это объясняется, по-видимому, разрыхляющим и активирующим влиянием газообразных продуктов, выделяющихся при разложении оксалата железа, с образованием FeO, далее Fe2O3 и магнетита.
Синтезированные нами хитозанкремнеземные магносорбенты имели следующие стандартные структурные характеристики - удельную поверхность в пределах 68-82 м2/ г, объем пор 1,2-1,5 м3/ г. При этом достигнут результат количественного регулирования магнитных свойств сорбентов с изменением величины удельной намагниченности насыщения от 4,3 до 17,4 МН , А х м2/кг, достигаемые увеличением содержания магнитной составляющей в составе магносорбентов.
Разработана технология получения элементсодержащих кремнеземных сорбентов на основе аэросила А-380 методом деструкционно- эпитаксиального осаждения (ДЭО), ранее используемого для модифицирования силикагеля такими химическими элементами, как медь, цинк, кобальт, магний, марганец (В. Б. Алесковский, 2001).
Для синтеза элементсодержащих кремнеземных сорбентов к 4 г аэросила А-380 добавляли 100 мл 0,15 М растворов соответствующих для каждого отдельного синтеза солей ^SO4, MgSO4, CoSO4, MnSO4, FeCI2в 0,25 М растворе водного аммиака. Суспензию выдерживали в течение 24 часов при 2300С. Далее сорбент отмывали дистиллированной водой до нейтральной реакции в промывных водах, высушивали при температуре 95¬1100С в течение 2 часов. Затем сорбент измельчали и методом рассева выделяли фракцию с размером частиц 80-120 мкм.
Количественный химический анализ полученных сорбентов подтвердил образование поликремневых солей химических элементов, таких как медь, магний, марганец, кобальт, и процесс образования модифицированных кремнеземов согласуется с механизмом, предложенным в работе (В.Б. Алесковского, 2001).
При определении концентрации Бренстедовских кислотных центров и констант равновесия Кср для образцов сорбентов, полученных методом формирования пористой структуры кремнезема в присутствии полимеров декстрана и хитозана, а также элементсодержащих сорбентов, синтезированных методом деструкционно-эпитаксиального осаждения, показано, что композиционные органокремнеземные сорбенты, по сравнению с исходным аэросилом А-380, имеют меньшие значения концентрации протодонорных кислотных центров В0 и констант равновесия. Данную закономерность можно объяснить тем, что при синтезе органокремнеземных сорбентов в процессе формирования корпускулярной структуры полимеры декстран и хитозан частично экранируют Бренстедовские центры кремнеземной матрицы. При синтезе композиционных сорбентов, содержащих Fe2O3, вводимый до массового количества 15% относительно общей массы получаемого композиционного сорбента, наблюдается усиление кислотных свойств поверхностных центров модифицированных кремнеземов. Кроме того, введение в состав композиционного сорбента Fe2O3 приводит к уменьшению на 25-30% удельной поверхности сорбентов, что, вероятно, обусловлено стабилизирующим действием оксида железа (II), проявляющимся в противодействии процессу, связанному с укрупнением корпускулярных частиц в структуре модифицированного кремнезема.
Синтез элементсодержащих кремнеземных сорбентов методом деструкционно-эпитаксиального осаждения, в отличие от общеизвестных методов синтеза твердых веществ, протекает не путем хаотичного междуатомного и межмолекулярного взаимодействия, а путем переноса и закрепления на заранее подготовленной поверхности каждый раз только одних, избранных структурных единиц. Данным методом по оригинальному синтезу получены магносорбенты, обладающие магнитными свойствами.
Таким образом, в результате проведенных исследований получен набор композиционных сорбентов с оптимизированным составом и структурными характеристиками, изучены их спектральные характеристики, микроструктура поверхности, кислотные свойства, что позволяет целенаправленно использовать сорбционные материалы для последующего получения на их основе специфичных иммуносорбентов.
Химическое модифицирование дисперсных твердых тел представляет собой процесс изменения химического состава поверхностного слоя в заданном направлении.
С целью дальнейшего активирования композиционных сорбентов функциональными группами нами разработаны три варианта модифицирования носителей: бензохиноновый, окислением и с применением глутарового альдегида.
Одним из важнейших условий получения магноиммуносорбентов с высоким уровнем емкости, специфичности и чувствительности является выбор эффективных методов иммобилизации лигандов.
Иммобилизацию иммуноглобулинов на поверхности магносорбентов проводили следующим образом: к 0,2 мл 10% взвеси магносорбента приливали 1 мл иммуноглобулинов чумных, варьируя количество белка от 0,5 до 10 мг/мл, ковалентное связывание проводили в течение 1-24 часов, при температуре 50С; 22+40С и 380С.
В соответствии с экспериментальными данными, оптимальными факторами, которые обеспечивают получение иммуносорбентов, обладающих высоким уровнем специфической активности и чувствительности, являются следующие: время иммобилизации специфических иммуноглобулинов 1,5 часа при значении рН раствора белка 6-8 и температуры от 5 до 220С.
На основе хитозанкремнеземных сорбентов, активированных бензохиноном и окислением перхлоратом натрия, разработаны эффективные композиционные магноиммуносорбенты, имеющие преимущества по уровню чувствительности и специфичности, технологичности получения перед глутаральдегидным методом получения активированных сорбционных материалов. В данном случае проявились недостатки этого метода, связанные с тем, что глутарового альдегида практически не существует в мономерном виде (P. Monson, 1978), и это приводит к неконтролируемости процесса активирования поверхности сорбента, а также к нестандартности в синтезе активированного магносорбента по количеству альдегидных групп. Магноиммунносорбенты, получаемые бензохиноновым методом и окислением, при хранении (40С) сохраняли стабильность свойств в течение одного года (срок наблюдения).
Одним из современных направлений научных исследований в области биотехнологии является использование иммобилизованных клеток. Иммобилизация биообъекта способствует увеличению продуктивности и производительности биотехнологического процесса, стабилизации свойств продуцента, возможности использования и быстрого удаления микробиологической системы из зоны культивирования (Н.С. Егоров, A. В.Олескин, В.Д.Самуилов, 1987; А.П.Синицын, Е.И.Райкина, B. Н. Лозинский и др., 1994; И.В. Владимцева, 2002; J.Naihu, 1987). Магнитное манипулирование микроорганизмами - продуцентами, фиксированными на магнитных носителях, весьма перспективно, однако до настоящего времени разработке этих технологий уделялось мало внимания. Это и определило характер следующего направления наших исследований: изучение возможности и эффективности использования хитозанкремне- земного магноиммуносорбента для глубинного культивирования вакцинного штамма Y.pestis EV. Лигандом для получения МИС служили иммуноглобулины G, выделенные из гипериммунной кроличьей сыворотки крови, полученной при иммунизации животных водорастворимыми антигенами, изолированными из биомассы Y.pestis EV, выращенной при (27±1)0С. Для получения иммобилизованных на магнитном носителе бактериальных клеток использовали производственную культуру вакцинного штамма Y.pestis EV. После контакта микробных клеток с магнитным носителем происходила прочная иммобилизация чумного микроба на поверхности магнитоуправляемого хитозанкремнеземного иммуносорбента на основе реакции «антиген-антитело».
Магноиммуносорбент с фиксированными микробными клетками вносили в лабораторный ферментер (СКВ, Швеция) и использовали в качестве инокулята, который удерживали на соленоиде путем создания электромагнитного поля. Для выращивания микробной взвеси в ферментере в качестве питательной среды использовали бульон Хоттингера рН (7,1±0,1), инкубирование проводили при температуре (27±1)0С дискретным добавлением глюкозы согласно РП №702-97.
Контролем служило глубинное культивирование Y.pestis EV по методике периодического выращивания в ферментере без иммобилизованного сорбента.
Анализируя динамику накопления биомассы производственного штамма Y.pestis EV в процессе глубинного культивирования с использованием магнитоуправляемых иммобилизованных систем, можно отметить, что при первом выращивании lag-фаза в среднем длилась 8-9 часов, после чего наступала экспоненциальная фаза, во время которой отмечались интенсивный рост и размножение клеток. Через 18-20 часов наступала стационарная фаза роста, в начале которой производили слив культуральной жидкости, оставляя соленоид в рабочем состоянии. В сосуд заливали свежую порцию бульона Хоттингера и проводили повторное выращивание биомассы, не внося дополнительное количество инокулята. Так повторяли пять раз.
Анализ динамики роста повторных выращиваниях иммобилизованных клеток вакцинного штамма чумного микроба показал, что lag-фаза практически отсутствовала, а стационарная фаза роста наступала через (15±1) часа. При этом «урожай» биомассы при первом и повторных глубинных культивированиях был фактически одинаковым и составил в среднем 7х1010м.к./мл среды. По сравнению с контролем (без иммобилизованного инокулята) количество биомассы увеличивалось на 40±5%.Описанные эксперименты были проведены на пяти сериях ферментативного бульона Хоттингера.
Изучение свойств вакцинного штамма Y.pestis EV, выращенного в условиях глубинного аппаратного культивирования при использовании иммобилизованного на магнитном сорбенте инокулята, проводили в соответствии с ФС 42-3877-99. Морфологические, тинкториальные, биохимические свойства, иммуногенность, термостабильность вакцины соответствовали НД. Результаты изучения жизнеспособности (опытных и контрольных образцов) свидетельствуют, что при глубинном культивировании в электромагнитном поле с использованием иммобилизованного инокулята на магнитном носителе процент живых микробных клеток достигает не менее (55,4±5,8)%, в то время, как в контрольных образцах этот показатель - не более (30±5)%.
Вышеизложенное дает основание высказаться в пользу перспективности использования этого способа глубинного культивирования при производстве живой чумной вакцины.
Кроме того, при глубинном культивировании чумного микроба появляется возможность использовать как микробную биомассу, так и культуральную жидкость для получения его капсульного антигена (Ф1), что значительно увеличивает выход целевого продукта высокого качества, который является основой при конструировании различных чумных иммунобиологических препаратов.
Методы твердофазного ИФА основаны на использовании серологически активных компонентов, иммобилизованных на нерастворимых носителях, что обеспечивает их быстрое и эффективное разделение. Чувствительность и специфичность ИФА обусловлена не только степенью чистоты и активности используемых ингредиентов, но и свойствами твердой фазы, которая должна сохранять иммунологические свойства и стабильность в иммобилизованном состоянии, обладать минимальной активностью, неспецифически связывать компоненты анализируемой системы.
Проведенные эксперименты показали, что хитозанкремнеземный магносорбент полностью отвечает перечисленным требованиям.
Синтезированный нами композиционный магносорбент, активированный перхлоратом натрия, был использован в качестве матрицы при конструировании антительной и антигенной чумной диагностических тест- систем для иммуноферментного анализа. При этом лигандами служили иммуноглобулины G выделенные из гипериммунной чумной кроличьей сыворотки, и Ф1 чумного микроба, изолированная из культуральной жидкости изоэлектрической преципитацией.
Чувствительность чумного антительного магноиммуносорбентного диагностикума,оцененная в ИФА, всех изготовленных серий была не менее 1х102м.к. в пробе. Специфичность препаратов позволяла проводить анализы без перекрестных реакций с исследованными гетерологичными микроорганизмами. Изготовленный нами антигенный КМИС обладал высокой чувствительностью при выявлении специфических антител.
Одним из приоритетных научных направлений современной биотехнологии является разработка технологий на основе использования иммобилизованных форм биологических объектов, в первую очередь микроорганизмов и их метаболитов. Несмотря на большое количество работ, посвященных явлению иммобилизации, в настоящее время реализована лишь часть потенциальных возможностей данного направления.
Придание носителям биомолекул и клеток свойства магнитоуправляемости открыло новые перспективы применения иммобилизованных микробиологических систем (В.И. Ефременко, 1996; И.С. Тюменцева, 1996; Е.Н. Афанасьев, 2000).
Анализ литературных данных по синтезу биотехнологических сорбентов свидетельствует о том, что в данном направлении существует множество проблем, связанных с выбором сорбционных материалов,поиском селективных лигандов, разработкой методов фиксирования лигандов на поверхности матриц. Решение вышеуказанных проблем возможно на основе целенаправленных исследований по разработке сорбентов, обладающих высокой специфичностью к определяемым биологически активным веществам и микроорганизмам, отличающихся стабильностью в условиях присоединения лигандов, а также обеспечивающих оптимизацию в процессах сорбции и десорбции (А.В. Брыкалов, 1993; В.Б. Алесковский, 2002).
В настоящее время для практических целей медицины, биотехнологии важное значение приобретают композиционные сорбенты, содержащие в качестве основного компонента кремнезем. Данные сорбенты могут быть с успехом использованы при конструировании твердофазных тест-систем для диагностики особо опасных инфекций, что является актуальным решением проблемы для медицины и ветеринарии (И.В. Жарникова, И.С. Тюменцева, А.В. Брыкалов, 1995).
Современные технологии синтеза органокремнеземных сорбентов включают четыре направления. Первое - основано на сорбции или хемосорбции полимеров из растворов на поверхности сорбентов, имеющих определенные структурные характеристики; второе - включает синтезы сорбентов, заключающиеся в радикальной или ионной полимеризации мономеров в присутствии кремнезема; третье направление - для получения объемно-модифицированных композиционных сорбентов предусматривает поликонденсацию кремнийорганических соединений. Способ и технологические аспекты получения композиционных сорбентов, основанные на формировании пористой структуры кремнеземной матрицы в присутствии полимеров (декстран, поливиниловый спирт) формируют четвертое направление по конструированию органокремнеземных сорбентов. Многочисленные публикации авторов (М.Т. Брык, 1981; Г.В. Кудрявцев, С.М. Староверов, 1989; В.Б. Алесковский, А.Я Юффа, 1989; А.В. Брыкалов, 1993; В.Б. Алесковский, 2002) содержат информацию по достоинствам и недостаткам каждого из направлений синтеза сорбента.
Целью начального этапа исследований по диссертационной работе являлось получение ферромагнитных сорбентов, обладающих заданным составом, адсорбционными и магнитными свойствами, используемыми для проведения твердофазного иммуноанализа микроорганизмов на основе методов ИФА. Одной из ключевых задач являлось применение магнитоуправляемых сорбционных материалов для глубинного культивирования вакцинного штамма чумного микроба.
Синтез магносорбентов с высокой сорбционной емкостью проведен методом формирования пористой структуры носителя в присутствии полимера хитозана. В качестве кремнеземного компонента использован высокодисперсный непористый кремнезем - аэросил А-380. В технологии получения сорбента применялся полисахарид хитозан, представляющий собой полностью дезацетилированный продукт - поли [(1-4)- 2 амино-2- дезокси-в-Д-глюкозы].
В строении хитозана выделяют два участка: упорядоченные участки, образованные противоположно заряженными звеньями полиэлектролитной системы, и участки, чередующиеся с дефектами. Наличие в хитозане двух гидроксильных и первичной аминогруппы расширяет возможности его модификации (Т.И. Тюпенко, 2001).
Технология получения хитозанкремнеземных магносорбентов включала восемь стадий. Стадии технологии 1-5 характеризуют процесс получения композиционного магносоорбента, а последующие стадии 6-8 - отражают этапы модифицирования поверхности сорбента функциональными группами: методом окисления, бензохиноновым, а также процессы иммобилизации антигена или антител с последующей стабилизацией КМИС. Технологии синтеза магноиммуносорбента подробно представлены в главе 3 диссертации.
В качестве магнитного компонента при синтезе применялся магнетит (Fe3O4), а также разработан способ получения магносорбента путем введения на стадии получения гидрогеля оксалата железа (II).
Структура композиционных сорбентов представлена корпускулярной системой, которая состоит из частиц кремнезема, покрытых полимером хитозана. Размер корпускул определяет величину удельной поверхности, а плотность их упаковки - объем и радиус пор. Механизм образования пористых хитозанкремнеземных магносорбентов можно представить, как сложный процесс, сопровождающийся формированием корпускулярной структуры кремнеземного остова из непористых частиц аэросила А-380, и включением в него органического полимера хитозана и магнетита.
При сравнительном анализе данных этих двух методов следует отметить, что с использованием в качестве компонента для синтеза сорбентов оксалата железа получаемые магносорбенты имеют несколько меньшую удельную поверхность и большее значение объема пор. Это объясняется, по-видимому, разрыхляющим и активирующим влиянием газообразных продуктов, выделяющихся при разложении оксалата железа, с образованием FeO, далее Fe2O3 и магнетита.
Синтезированные нами хитозанкремнеземные магносорбенты имели следующие стандартные структурные характеристики - удельную поверхность в пределах 68-82 м2/ г, объем пор 1,2-1,5 м3/ г. При этом достигнут результат количественного регулирования магнитных свойств сорбентов с изменением величины удельной намагниченности насыщения от 4,3 до 17,4 МН , А х м2/кг, достигаемые увеличением содержания магнитной составляющей в составе магносорбентов.
Разработана технология получения элементсодержащих кремнеземных сорбентов на основе аэросила А-380 методом деструкционно- эпитаксиального осаждения (ДЭО), ранее используемого для модифицирования силикагеля такими химическими элементами, как медь, цинк, кобальт, магний, марганец (В. Б. Алесковский, 2001).
Для синтеза элементсодержащих кремнеземных сорбентов к 4 г аэросила А-380 добавляли 100 мл 0,15 М растворов соответствующих для каждого отдельного синтеза солей ^SO4, MgSO4, CoSO4, MnSO4, FeCI2в 0,25 М растворе водного аммиака. Суспензию выдерживали в течение 24 часов при 2300С. Далее сорбент отмывали дистиллированной водой до нейтральной реакции в промывных водах, высушивали при температуре 95¬1100С в течение 2 часов. Затем сорбент измельчали и методом рассева выделяли фракцию с размером частиц 80-120 мкм.
Количественный химический анализ полученных сорбентов подтвердил образование поликремневых солей химических элементов, таких как медь, магний, марганец, кобальт, и процесс образования модифицированных кремнеземов согласуется с механизмом, предложенным в работе (В.Б. Алесковского, 2001).
При определении концентрации Бренстедовских кислотных центров и констант равновесия Кср для образцов сорбентов, полученных методом формирования пористой структуры кремнезема в присутствии полимеров декстрана и хитозана, а также элементсодержащих сорбентов, синтезированных методом деструкционно-эпитаксиального осаждения, показано, что композиционные органокремнеземные сорбенты, по сравнению с исходным аэросилом А-380, имеют меньшие значения концентрации протодонорных кислотных центров В0 и констант равновесия. Данную закономерность можно объяснить тем, что при синтезе органокремнеземных сорбентов в процессе формирования корпускулярной структуры полимеры декстран и хитозан частично экранируют Бренстедовские центры кремнеземной матрицы. При синтезе композиционных сорбентов, содержащих Fe2O3, вводимый до массового количества 15% относительно общей массы получаемого композиционного сорбента, наблюдается усиление кислотных свойств поверхностных центров модифицированных кремнеземов. Кроме того, введение в состав композиционного сорбента Fe2O3 приводит к уменьшению на 25-30% удельной поверхности сорбентов, что, вероятно, обусловлено стабилизирующим действием оксида железа (II), проявляющимся в противодействии процессу, связанному с укрупнением корпускулярных частиц в структуре модифицированного кремнезема.
Синтез элементсодержащих кремнеземных сорбентов методом деструкционно-эпитаксиального осаждения, в отличие от общеизвестных методов синтеза твердых веществ, протекает не путем хаотичного междуатомного и межмолекулярного взаимодействия, а путем переноса и закрепления на заранее подготовленной поверхности каждый раз только одних, избранных структурных единиц. Данным методом по оригинальному синтезу получены магносорбенты, обладающие магнитными свойствами.
Таким образом, в результате проведенных исследований получен набор композиционных сорбентов с оптимизированным составом и структурными характеристиками, изучены их спектральные характеристики, микроструктура поверхности, кислотные свойства, что позволяет целенаправленно использовать сорбционные материалы для последующего получения на их основе специфичных иммуносорбентов.
Химическое модифицирование дисперсных твердых тел представляет собой процесс изменения химического состава поверхностного слоя в заданном направлении.
С целью дальнейшего активирования композиционных сорбентов функциональными группами нами разработаны три варианта модифицирования носителей: бензохиноновый, окислением и с применением глутарового альдегида.
Одним из важнейших условий получения магноиммуносорбентов с высоким уровнем емкости, специфичности и чувствительности является выбор эффективных методов иммобилизации лигандов.
Иммобилизацию иммуноглобулинов на поверхности магносорбентов проводили следующим образом: к 0,2 мл 10% взвеси магносорбента приливали 1 мл иммуноглобулинов чумных, варьируя количество белка от 0,5 до 10 мг/мл, ковалентное связывание проводили в течение 1-24 часов, при температуре 50С; 22+40С и 380С.
В соответствии с экспериментальными данными, оптимальными факторами, которые обеспечивают получение иммуносорбентов, обладающих высоким уровнем специфической активности и чувствительности, являются следующие: время иммобилизации специфических иммуноглобулинов 1,5 часа при значении рН раствора белка 6-8 и температуры от 5 до 220С.
На основе хитозанкремнеземных сорбентов, активированных бензохиноном и окислением перхлоратом натрия, разработаны эффективные композиционные магноиммуносорбенты, имеющие преимущества по уровню чувствительности и специфичности, технологичности получения перед глутаральдегидным методом получения активированных сорбционных материалов. В данном случае проявились недостатки этого метода, связанные с тем, что глутарового альдегида практически не существует в мономерном виде (P. Monson, 1978), и это приводит к неконтролируемости процесса активирования поверхности сорбента, а также к нестандартности в синтезе активированного магносорбента по количеству альдегидных групп. Магноиммунносорбенты, получаемые бензохиноновым методом и окислением, при хранении (40С) сохраняли стабильность свойств в течение одного года (срок наблюдения).
Одним из современных направлений научных исследований в области биотехнологии является использование иммобилизованных клеток. Иммобилизация биообъекта способствует увеличению продуктивности и производительности биотехнологического процесса, стабилизации свойств продуцента, возможности использования и быстрого удаления микробиологической системы из зоны культивирования (Н.С. Егоров, A. В.Олескин, В.Д.Самуилов, 1987; А.П.Синицын, Е.И.Райкина, B. Н. Лозинский и др., 1994; И.В. Владимцева, 2002; J.Naihu, 1987). Магнитное манипулирование микроорганизмами - продуцентами, фиксированными на магнитных носителях, весьма перспективно, однако до настоящего времени разработке этих технологий уделялось мало внимания. Это и определило характер следующего направления наших исследований: изучение возможности и эффективности использования хитозанкремне- земного магноиммуносорбента для глубинного культивирования вакцинного штамма Y.pestis EV. Лигандом для получения МИС служили иммуноглобулины G, выделенные из гипериммунной кроличьей сыворотки крови, полученной при иммунизации животных водорастворимыми антигенами, изолированными из биомассы Y.pestis EV, выращенной при (27±1)0С. Для получения иммобилизованных на магнитном носителе бактериальных клеток использовали производственную культуру вакцинного штамма Y.pestis EV. После контакта микробных клеток с магнитным носителем происходила прочная иммобилизация чумного микроба на поверхности магнитоуправляемого хитозанкремнеземного иммуносорбента на основе реакции «антиген-антитело».
Магноиммуносорбент с фиксированными микробными клетками вносили в лабораторный ферментер (СКВ, Швеция) и использовали в качестве инокулята, который удерживали на соленоиде путем создания электромагнитного поля. Для выращивания микробной взвеси в ферментере в качестве питательной среды использовали бульон Хоттингера рН (7,1±0,1), инкубирование проводили при температуре (27±1)0С дискретным добавлением глюкозы согласно РП №702-97.
Контролем служило глубинное культивирование Y.pestis EV по методике периодического выращивания в ферментере без иммобилизованного сорбента.
Анализируя динамику накопления биомассы производственного штамма Y.pestis EV в процессе глубинного культивирования с использованием магнитоуправляемых иммобилизованных систем, можно отметить, что при первом выращивании lag-фаза в среднем длилась 8-9 часов, после чего наступала экспоненциальная фаза, во время которой отмечались интенсивный рост и размножение клеток. Через 18-20 часов наступала стационарная фаза роста, в начале которой производили слив культуральной жидкости, оставляя соленоид в рабочем состоянии. В сосуд заливали свежую порцию бульона Хоттингера и проводили повторное выращивание биомассы, не внося дополнительное количество инокулята. Так повторяли пять раз.
Анализ динамики роста повторных выращиваниях иммобилизованных клеток вакцинного штамма чумного микроба показал, что lag-фаза практически отсутствовала, а стационарная фаза роста наступала через (15±1) часа. При этом «урожай» биомассы при первом и повторных глубинных культивированиях был фактически одинаковым и составил в среднем 7х1010м.к./мл среды. По сравнению с контролем (без иммобилизованного инокулята) количество биомассы увеличивалось на 40±5%.Описанные эксперименты были проведены на пяти сериях ферментативного бульона Хоттингера.
Изучение свойств вакцинного штамма Y.pestis EV, выращенного в условиях глубинного аппаратного культивирования при использовании иммобилизованного на магнитном сорбенте инокулята, проводили в соответствии с ФС 42-3877-99. Морфологические, тинкториальные, биохимические свойства, иммуногенность, термостабильность вакцины соответствовали НД. Результаты изучения жизнеспособности (опытных и контрольных образцов) свидетельствуют, что при глубинном культивировании в электромагнитном поле с использованием иммобилизованного инокулята на магнитном носителе процент живых микробных клеток достигает не менее (55,4±5,8)%, в то время, как в контрольных образцах этот показатель - не более (30±5)%.
Вышеизложенное дает основание высказаться в пользу перспективности использования этого способа глубинного культивирования при производстве живой чумной вакцины.
Кроме того, при глубинном культивировании чумного микроба появляется возможность использовать как микробную биомассу, так и культуральную жидкость для получения его капсульного антигена (Ф1), что значительно увеличивает выход целевого продукта высокого качества, который является основой при конструировании различных чумных иммунобиологических препаратов.
Методы твердофазного ИФА основаны на использовании серологически активных компонентов, иммобилизованных на нерастворимых носителях, что обеспечивает их быстрое и эффективное разделение. Чувствительность и специфичность ИФА обусловлена не только степенью чистоты и активности используемых ингредиентов, но и свойствами твердой фазы, которая должна сохранять иммунологические свойства и стабильность в иммобилизованном состоянии, обладать минимальной активностью, неспецифически связывать компоненты анализируемой системы.
Проведенные эксперименты показали, что хитозанкремнеземный магносорбент полностью отвечает перечисленным требованиям.
Синтезированный нами композиционный магносорбент, активированный перхлоратом натрия, был использован в качестве матрицы при конструировании антительной и антигенной чумной диагностических тест- систем для иммуноферментного анализа. При этом лигандами служили иммуноглобулины G выделенные из гипериммунной чумной кроличьей сыворотки, и Ф1 чумного микроба, изолированная из культуральной жидкости изоэлектрической преципитацией.
Чувствительность чумного антительного магноиммуносорбентного диагностикума,оцененная в ИФА, всех изготовленных серий была не менее 1х102м.к. в пробе. Специфичность препаратов позволяла проводить анализы без перекрестных реакций с исследованными гетерологичными микроорганизмами. Изготовленный нами антигенный КМИС обладал высокой чувствительностью при выявлении специфических антител.



