МНОГОЦВЕТНАЯ ЭЛЕКТРОФОТОМЕТРИЯ АЛЬФА СЕВЕРНОЙ КОРОНЫ, GG ОРИОНА, DI ГЕРКУЛЕСА, V541 ЛЕБЕДЯ, V577 ЗМЕЕНОСЦА - ЗАТМЕННЫХ ДВОЙНЫХ ЗВЕЗД СО ЗНАЧИТЕЛЬНЫМ ЭКСЦЕНТРИСИТЕТОМ
|
Введение
Глава I. Методика узкополосных и гетерохромных фотоэлектрических наблюдений затменных двойных систем 11
§1.1. Обнаружение затменных систем из фотографических наблюдений, определение орбит, периодов и оценка точности 11
§1.2. Широкополосные и узкополосные многоцветные наблюдения
с фотоумножителями. Практика использования одноканальных и многоканальных фотометров 12
§1.3. Использование ПЗС - матриц в фотометрии: преимущества и недостатки
в сравнении с фотоумножителями 19
§1.4. Исследование кривых реакции использованных в работе систем фотометрической аппаратуры 21
§1.5. Учет поглощения излучения в атмосфере и редукция наблюдений в стандартную фотометрическую систему 24
Глава II. Исследование релятивистского вращения линии апсид затменной системы а Северной Короны 28
§2.1. Постановка задачи. История открытия и изучения системы 28
§2.2. Узкополосная электрофотометрия а Северной Короны в XX 4600 и 7510 А и построение высокоточных кривых блеска 30
§2.3. Определение фотометрических и абсолютных элементов 32
§2.4. Обнаружение и первое измерение скорости апсидального вращения 42
§2.5. Анализ возможных причин расхождения с теорией наблюдаемой
скорости апсидального движения 49
Глава III. Определение физических характеристик и обнаружение вращения линии апсид в затменной системе GG Ориона
§3.1. Обзор наблюдательных данных и постановка задачи 52
§3.2. Высокоточная электрофотометрия GG Ориона в ТШВЭ. Обнаружение физической микропеременности звезды 53
§3.3. Фотометрия GG Ориона в Московской обсерватории ГАИШ МГУ
с использованием ПЗС-матрицы 55
§3.4. Фотометрические и абсолютные элементы из решения сводной
фотоэлектрической кривой блеска системы. Аномальное межзвездное поглощение в направлении GG Ориона 57
§3.5. Измерение скорости вращения линии апсид 70
Глава IV. Поиск третьего тела в затменной системе DI Геркулеса с аномально медленным вращением линии апсид
§4.1. Краткая библиография работ и постановка задачи 74
§4.2. Высокоточная электрофотометрия DI Геркулеса в ТШВЭ 76
§4.3. Результаты решения кривых блеска итерационным методом дифференциальных поправок 78
§4.4. Подтверждение аномалий в апсидальном движении DI Геркулеса 84
§4.5. Анализ графика (О-С) и изменений глубин минимумов с целью обнаружения третьей звезды в системе DI Геркулеса. Новые ограничения на третий свет 89
Глава V. Электрофотометрия уникальной затменной звезды V541 Лебедя с целью уточнения параметров апсидального движения... 97
§5.1. История исследования системы 97
§5.2. Новые фотоэлектрические наблюдения и построения сводной кривой блеска...98 §5.3. Определение фотометрических элементов и физических характеристик
V541 Лебедя 98
§5.4. Результаты исследования апсидального движения 105
Глава VI. Первые фотоэлектрические исследования затменной системы Змееносца с эллиптической орбитой
§6.1. Обнаружение и детальное исследование физической переменности блеска главной компоненты системы в полосах WBVR
§6.2. Построение кривых блеска и определение фотометрических и абсолютных элементов системы 111
§6.3. Прогнозы возможности исследования апсидального движения в системе V577 Змееносца
Заключение
Список литературы
Глава I. Методика узкополосных и гетерохромных фотоэлектрических наблюдений затменных двойных систем 11
§1.1. Обнаружение затменных систем из фотографических наблюдений, определение орбит, периодов и оценка точности 11
§1.2. Широкополосные и узкополосные многоцветные наблюдения
с фотоумножителями. Практика использования одноканальных и многоканальных фотометров 12
§1.3. Использование ПЗС - матриц в фотометрии: преимущества и недостатки
в сравнении с фотоумножителями 19
§1.4. Исследование кривых реакции использованных в работе систем фотометрической аппаратуры 21
§1.5. Учет поглощения излучения в атмосфере и редукция наблюдений в стандартную фотометрическую систему 24
Глава II. Исследование релятивистского вращения линии апсид затменной системы а Северной Короны 28
§2.1. Постановка задачи. История открытия и изучения системы 28
§2.2. Узкополосная электрофотометрия а Северной Короны в XX 4600 и 7510 А и построение высокоточных кривых блеска 30
§2.3. Определение фотометрических и абсолютных элементов 32
§2.4. Обнаружение и первое измерение скорости апсидального вращения 42
§2.5. Анализ возможных причин расхождения с теорией наблюдаемой
скорости апсидального движения 49
Глава III. Определение физических характеристик и обнаружение вращения линии апсид в затменной системе GG Ориона
§3.1. Обзор наблюдательных данных и постановка задачи 52
§3.2. Высокоточная электрофотометрия GG Ориона в ТШВЭ. Обнаружение физической микропеременности звезды 53
§3.3. Фотометрия GG Ориона в Московской обсерватории ГАИШ МГУ
с использованием ПЗС-матрицы 55
§3.4. Фотометрические и абсолютные элементы из решения сводной
фотоэлектрической кривой блеска системы. Аномальное межзвездное поглощение в направлении GG Ориона 57
§3.5. Измерение скорости вращения линии апсид 70
Глава IV. Поиск третьего тела в затменной системе DI Геркулеса с аномально медленным вращением линии апсид
§4.1. Краткая библиография работ и постановка задачи 74
§4.2. Высокоточная электрофотометрия DI Геркулеса в ТШВЭ 76
§4.3. Результаты решения кривых блеска итерационным методом дифференциальных поправок 78
§4.4. Подтверждение аномалий в апсидальном движении DI Геркулеса 84
§4.5. Анализ графика (О-С) и изменений глубин минимумов с целью обнаружения третьей звезды в системе DI Геркулеса. Новые ограничения на третий свет 89
Глава V. Электрофотометрия уникальной затменной звезды V541 Лебедя с целью уточнения параметров апсидального движения... 97
§5.1. История исследования системы 97
§5.2. Новые фотоэлектрические наблюдения и построения сводной кривой блеска...98 §5.3. Определение фотометрических элементов и физических характеристик
V541 Лебедя 98
§5.4. Результаты исследования апсидального движения 105
Глава VI. Первые фотоэлектрические исследования затменной системы Змееносца с эллиптической орбитой
§6.1. Обнаружение и детальное исследование физической переменности блеска главной компоненты системы в полосах WBVR
§6.2. Построение кривых блеска и определение фотометрических и абсолютных элементов системы 111
§6.3. Прогнозы возможности исследования апсидального движения в системе V577 Змееносца
Заключение
Список литературы
Современное состояние исследований по проблеме вращения линии апсид.
Среди всего многообразия двойных звезд особое место занимают затменные системы, обладающие значительным эксцентриситетом. Оставив в стороне вопрос о происхождении двойных систем (детальной общепринятой теории пока нет), остановимся на тех возможностях, которые предоставляют сравнительно простые фотометрические наблюдения данных объектов. Известно, что двойные звезды не являются идеальными шарами. Даже хорошо разделенные пары чувствительны к взаимному притяжению и оказываются слегка вытянутыми по направлению друг к другу. Модель трехосного эллипсоида вращения является весьма хорошим приближением. Кроме того, звезды вращаются, а значит, на них действуют центробежные силы, сплющивая их у полюсов вращения. Поэтому результирующие силы, действующие на центр масс каждой из звезд, немного отличаются от предсказываемых законом обратных квадратов. В случае эксцентричных орбит это приводит к тому, что эллипсы, описываемые компонентами двойной вокруг общего центра масс, оказываются незамкнутыми. Можно представить дело так, что большая ось эллипса (линия апсид) поворачивается в пространстве, причем по направлению орбитального вращения. Скорость этого вращения пропорциональна степени отклонения формы звезды от идеальной сферы. Первым теоретические исследования этого эффекта провел Рассел (1928). В последовавших за этим работах Чандрасекара (1933), Коулинга (1938) и Стерна (1939) авторы определили, что задача определения теоретически ожидаемой угловой скорости вращения линии апсид сводится к определению неких параметров kj,характеризующих степень концентрации вещества звезды к ее центру. Эти параметры имеют эволюционный статус, уменьшаясь при сжатии звезды и увеличиваясь при ее расширении. Параметры задаются следующими соотношениями (см., например, Халиуллин, 1997):
где функции принимают нулевые значения в центре звезды (г = 0) и задаются следующими дифференциальными уравнениями первого порядка:
Г~Т- +6-$т(7/ +1) + “ О = JU+1) >j= 2,3,4.
dr p(r)
Индекс jопределяет порядок параметра, г — расстояние от центра звезды до данного слоя, р(г) - плотность на расстоянии г от центра звезды, р(г) — средняя плотность внутри сферы с радиусом г, R- радиус звезды. Уравнение (2), называемое уравнением Радо, решается одним из численных методов решения дифференциальных уравнений при заданном модельном распределении плотности р(г) по радиусу звезды. Величины kj называются параметрами внутренней структуры звезды. Для нашей работы практическую ценность имеют только параметры второго порядка, кг. Параметры более высоких порядков дают пренебрежимо малый вклад в апсидальное движение. С использованием параметров кг теория вращения линии апсид за счет приливной и вращательной деформации компонент приводит к следующему соотношению.Здесь Р - аномалистический орбитальный период, (7с/ам - период вращения линии апсид за счет приливной и вращательной деформации компонент. Очевидно, что скорость вращения линии апсид выражается формулой
Индексы у констант Cfи вторые индексы у параметра кг,< обозначают принадлежность к главной (/ = 1) или вторичной (i= 2) компонентам. Константы С< следующим образом зависят от геометрических и физических характеристик компонент
Надо отметить еще один немаловажный момент. Данные об осевом вращении компонент обычно скудны и ненадежны. Теоретические оценки показывают, что приливное трение должно приводить к быстрой синхронизации орбитального и осевого вращения в тесной двойной системе (ТДС). При наличии эксцентриситета не совсем ясно, какую именно скорость принять для выполнения условия синхронизации. Свинге (1936) на основе статистических исследований предложил считать таковой угловую орбитальную скорость в периастре. Современные исследования (например, Кларет и Гименее, 1993), это подтверждают.Уравнение (5) было получено в предположении, что орбитальный период двойной системы значительно превышает периоды собственных свободных колебаний звезд- компонент (Коулинг, 1938; Стерн, 1939). При достаточно коротких орбитальных периодах возникает необходимость в учете динамической поправки к формуле (5), проистекающей в результате эффектов, зависящих от способности звезды сжиматься и вследствие резонансов между динамическими приливами и модами свободных колебаний звезд. Эффект может проявиться как в сторону увеличения, так и в сторону уменьшения классического апсидального вращения, в зависимости от степени синхронизации осевого и орбитального вращения звезд в периастре (Кларет и Виллеме, 2002). Этот эффект для рассматриваемых в данном исследовании звезд оказался незначительным.
Кроме того, существует еще релятивистский вклад во вращение линии апсид, связанный с искажением пространства-времени вблизи массивных тел (Леви-Чивита, 1937). Релятивистский эффект действует в том же направлении, что и классический, зависит от массы звезд, эксцентриситета орбиты и расстояния между компонентами двойной. Для массивных звезд ранних спектральных классов, а таких благодаря наблюдательной селекции немало среди затменных переменных, релятивистский вклад может превышать классический в несколько раз. Учитывать релятивистский вклад во вращение линии апсид удобно по формуле (Халиуллин, 1997):
. Р5,3(1-е2)
^ = Ш'10 (10)
(т«1 +/и2)
где орбитальный период следует выражать в сутках, массы компонент в солнечных массах, численный коэффициент при этом подобран так, что период релятивистского обращения линии апсид Ureiвыразится в годах. Подобный эффект, но в значительно меньшем масштабе, наблюдается в Солнечной системе у Меркурия. До недавнего времени, являясь одним из самых значительных по величине наблюдаемых релятивистских эффектов, он служил неким тестом теории гравитации Эйнштейна и сослужил хорошую службу, т.к. вновь привлек внимание к такой рутинной области практической астрофизики, как фотометрия затменных звезд (Рудкьобинг, 1959; Мартынов и Халиуллин, 1980; Кох, 1977). Но относительно недавно были обнаружены двойные пульсары на эллиптических орбитах, где релятивистские эффекты в сотни раз больше (Халз и Тейлор, 1975), и наблюдения затменных потеряли свое значение в качестве теста теории относительности. На первое место опять выдвинулась задача определения констант внутреннего строения звезды для проверки существующих эволюционных расчетов. Надо отметить, что именно первые определения данных параметров из наблюдений нескольких таких систем в середине прошлого века привели к пониманию того, что вещество звезд гораздо более сконцентрировано к их центру, чем это считалось в начале становления теории внутреннего строения звезд (Шварцшильд, 1958; Матис, 1967; Семенюк и Пачиньский, 1968).
Совокупное действие классического и релятивистского эффектов равно простой сумме: = д>г,т + б)п1. После надлежащего учета релятивистского эффекта мы можем определить константы кг и сравнить теорию с наблюдениями. Очевидно, что при таком сравнении мы должны получить согласие масс, радиусов и температур каждой из компонент с принятой теоретической моделью звезд при одном химическом составе и возрасте. К сожалению, химический состав из одних лишь фотометрических наблюдений определяется плохо, что вносит дополнительные трудности при выборе адекватной модели. Полного согласия между теорией и наблюдениями в каждом конкретном случае до последнего времени не было. Но наблюдающееся уменьшение расхождений (за счет уточнения теории и накопления наблюдательных данных) говорит о том, что мы находимся на верном пути. Количество параметров, которые необходимо учитывать при решении задачи, довольно велико, и не все поддаются точному учету. Например, появившиеся в начале 90-х годов новые данные о коэффициентах непрозрачности (Роджерс и Иглесиас, 1992) и, соответственно, измененные параметры кг (Кларет и Гименее, 1992) привели для некоторых систем либо к совпадению теоретических расчетов с наблюдениями, либо значительно уменьшили расхождение. Самым сложным для наблюдений параметром является на данный момент осевое вращение звезд. Имеются данные о том, что не всегда компоненты в двойной системе вращаются вокруг оси синхронно с движением по орбите; также могут быть не компланарны осевые и орбитальный моменты вращения. Все это может приводить как к замедлению, так и к ускорению апсидального вращения. Отсюда видно, что каждая отдельно взятая система должна подвергаться всестороннему исследованию и всегда надо помнить о том, что реальная картина может отличаться от модели, которой мы на данный момент пользуемся.
Подводя итог Введению, резюмируем, что в последнее время исследования релятивистских эффектов отошли на второй план и тот ажиотаж вокруг нескольких систем - DI Her, AS Cam, который привел даже к возникновению отличных от Эйнштейновской теорий гравитации (Моффат, 1984, 1989), прошел. Каждый конкретный случай либо нашел свое объяснение в рамках классической теории (Козырева и др., 1999), либо оставляет такую возможность для более искусных наблюдателей, вооруженных лучшей техникой, в будущем (Халиуллин и др., 1991; Гайнэн и Райзенбергер, 1989). Мы уже говорили, что согласие теории с наблюдениями существует статистически, и каждая вновь исследованная система несет в себе новую информацию. Общее количество исследованных звезд не превышает 100, а исследованных с точностью пригодной для расчетов и того меньше — порядка 40. Поэтому для наблюдателей, обладающих скромными аппаратурными возможностями, данная область представляется одной из наиболее перспективных для выполнения действительно качественного исследования, ценность которого со временем только возрастет.
На защиту выносятся следующие основные положения диссертации:
1. Высокоточные фотоэлектрические измерения затменных двойных систем а Северной Короны, GG Ориона, DI Геркулеса, V541 Лебедя, V577 Змееносца (более 9000 измерений). Для систем GG Ориона и V577 Змееносца фотоэлектрические наблюдения выполнены впервые в нашей работе.
2. Фотометрические и абсолютные элементы затменных двойных систем GG Ориона, V577 Змееносца, найденные из анализа их многоцветных кривых блеска итерационным
4) методом дифференциальных поправок.
3. Первое обнаружение и измерение апсидального вращения в системах а Северной Короны и GG Ориона. Уточнение скорости вращения линии апсид в системах V541 Лебедя и DI Геркулеса.
4. Обнаружение физической микропеременности V577 Змееносца, а Северной Короны и GG Ориона. Определение периода физической переменности блеска у V577 Змееносца. Установление стабильности этого периода на протяжении 3 лет наблюдений.
5. Обнаружение аномально большого межзвездного поглощения (Av= 4.1кпк’’) в направлении затменной двойной системы GG Ориона с компонентами, еще не достигшими, по-видимому, начальной главной последовательности.
Перечисленные пункты определяют также научную новизну результатов, полученных в диссертации. Исследования автора по этой теме начаты в 1986 г. и продолжаются по настоящее время. Основные результаты работы докладывались на семинарах отдела звездной астрофизики ГАИШ МГУ под руководством члена-корр. РАН А.М. Черепащука, на международной конференции по переменным звездам во Франции в 2002г.
Всего по теме диссертации было опубликовано 6 статей, три из них совместные. Общая постановка задач определялась моим научным руководителем, докт.физ.-мат.наук Х.Ф. Халиуллиным. В совместных работах с Х.Ф. Халиуллиным по исследованию систем GG Оп и V541 Cyg, автору принадлежит участие в постановке задачи, непосредственные наблюдения систем, первичная обработка результатов, определение фотометрических и абсолютных элементов GGOri, измерение параметров апсидального движения GGOri, уточнение параметров апсидального движения V541 Cyg, участие в обсуждении результатов. В совместной работе с С.А. Ходыкиным по DIHer, автору принадлежит большая часть наблюдений, а также участие в обработке и интерпретации результатов. В остальных работах, по системам а СгВ и V577 Oph, исследования проведены самостоятельно.
Основная работа по разработке и изготовлению аппаратуры для наблюдений была проделана также самостоятельно. На этапе исследования кривых реакции, наблюдений стандартных звезд для определения температурных зависимостей и редукции в систему Каталога Г АИШ, неоценимую помощь оказала Н.С. Волкова. При определении фотометрических параметров систем были использованы различные варианты программы, разработанной А.И. Халиуллиной и Х.Ф. Халиуллиным и реализующей модифицированный метод дифференциальных поправок. Множество вспомогательных программ для обработки электрофотометрических наблюдений, для поисков периодов были написаны автором самостоятельно. Часть наблюдений была выполнена с использованием электронных систем ввода в память ЭВМ и специальных программ для этих блоков, разработанных и отлаженных В.Г. Корниловым.
Среди всего многообразия двойных звезд особое место занимают затменные системы, обладающие значительным эксцентриситетом. Оставив в стороне вопрос о происхождении двойных систем (детальной общепринятой теории пока нет), остановимся на тех возможностях, которые предоставляют сравнительно простые фотометрические наблюдения данных объектов. Известно, что двойные звезды не являются идеальными шарами. Даже хорошо разделенные пары чувствительны к взаимному притяжению и оказываются слегка вытянутыми по направлению друг к другу. Модель трехосного эллипсоида вращения является весьма хорошим приближением. Кроме того, звезды вращаются, а значит, на них действуют центробежные силы, сплющивая их у полюсов вращения. Поэтому результирующие силы, действующие на центр масс каждой из звезд, немного отличаются от предсказываемых законом обратных квадратов. В случае эксцентричных орбит это приводит к тому, что эллипсы, описываемые компонентами двойной вокруг общего центра масс, оказываются незамкнутыми. Можно представить дело так, что большая ось эллипса (линия апсид) поворачивается в пространстве, причем по направлению орбитального вращения. Скорость этого вращения пропорциональна степени отклонения формы звезды от идеальной сферы. Первым теоретические исследования этого эффекта провел Рассел (1928). В последовавших за этим работах Чандрасекара (1933), Коулинга (1938) и Стерна (1939) авторы определили, что задача определения теоретически ожидаемой угловой скорости вращения линии апсид сводится к определению неких параметров kj,характеризующих степень концентрации вещества звезды к ее центру. Эти параметры имеют эволюционный статус, уменьшаясь при сжатии звезды и увеличиваясь при ее расширении. Параметры задаются следующими соотношениями (см., например, Халиуллин, 1997):
где функции принимают нулевые значения в центре звезды (г = 0) и задаются следующими дифференциальными уравнениями первого порядка:
Г~Т- +6-$т(7/ +1) + “ О = JU+1) >j= 2,3,4.
dr p(r)
Индекс jопределяет порядок параметра, г — расстояние от центра звезды до данного слоя, р(г) - плотность на расстоянии г от центра звезды, р(г) — средняя плотность внутри сферы с радиусом г, R- радиус звезды. Уравнение (2), называемое уравнением Радо, решается одним из численных методов решения дифференциальных уравнений при заданном модельном распределении плотности р(г) по радиусу звезды. Величины kj называются параметрами внутренней структуры звезды. Для нашей работы практическую ценность имеют только параметры второго порядка, кг. Параметры более высоких порядков дают пренебрежимо малый вклад в апсидальное движение. С использованием параметров кг теория вращения линии апсид за счет приливной и вращательной деформации компонент приводит к следующему соотношению.Здесь Р - аномалистический орбитальный период, (7с/ам - период вращения линии апсид за счет приливной и вращательной деформации компонент. Очевидно, что скорость вращения линии апсид выражается формулой
Индексы у констант Cfи вторые индексы у параметра кг,< обозначают принадлежность к главной (/ = 1) или вторичной (i= 2) компонентам. Константы С< следующим образом зависят от геометрических и физических характеристик компонент
Надо отметить еще один немаловажный момент. Данные об осевом вращении компонент обычно скудны и ненадежны. Теоретические оценки показывают, что приливное трение должно приводить к быстрой синхронизации орбитального и осевого вращения в тесной двойной системе (ТДС). При наличии эксцентриситета не совсем ясно, какую именно скорость принять для выполнения условия синхронизации. Свинге (1936) на основе статистических исследований предложил считать таковой угловую орбитальную скорость в периастре. Современные исследования (например, Кларет и Гименее, 1993), это подтверждают.Уравнение (5) было получено в предположении, что орбитальный период двойной системы значительно превышает периоды собственных свободных колебаний звезд- компонент (Коулинг, 1938; Стерн, 1939). При достаточно коротких орбитальных периодах возникает необходимость в учете динамической поправки к формуле (5), проистекающей в результате эффектов, зависящих от способности звезды сжиматься и вследствие резонансов между динамическими приливами и модами свободных колебаний звезд. Эффект может проявиться как в сторону увеличения, так и в сторону уменьшения классического апсидального вращения, в зависимости от степени синхронизации осевого и орбитального вращения звезд в периастре (Кларет и Виллеме, 2002). Этот эффект для рассматриваемых в данном исследовании звезд оказался незначительным.
Кроме того, существует еще релятивистский вклад во вращение линии апсид, связанный с искажением пространства-времени вблизи массивных тел (Леви-Чивита, 1937). Релятивистский эффект действует в том же направлении, что и классический, зависит от массы звезд, эксцентриситета орбиты и расстояния между компонентами двойной. Для массивных звезд ранних спектральных классов, а таких благодаря наблюдательной селекции немало среди затменных переменных, релятивистский вклад может превышать классический в несколько раз. Учитывать релятивистский вклад во вращение линии апсид удобно по формуле (Халиуллин, 1997):
. Р5,3(1-е2)
^ = Ш'10 (10)
(т«1 +/и2)
где орбитальный период следует выражать в сутках, массы компонент в солнечных массах, численный коэффициент при этом подобран так, что период релятивистского обращения линии апсид Ureiвыразится в годах. Подобный эффект, но в значительно меньшем масштабе, наблюдается в Солнечной системе у Меркурия. До недавнего времени, являясь одним из самых значительных по величине наблюдаемых релятивистских эффектов, он служил неким тестом теории гравитации Эйнштейна и сослужил хорошую службу, т.к. вновь привлек внимание к такой рутинной области практической астрофизики, как фотометрия затменных звезд (Рудкьобинг, 1959; Мартынов и Халиуллин, 1980; Кох, 1977). Но относительно недавно были обнаружены двойные пульсары на эллиптических орбитах, где релятивистские эффекты в сотни раз больше (Халз и Тейлор, 1975), и наблюдения затменных потеряли свое значение в качестве теста теории относительности. На первое место опять выдвинулась задача определения констант внутреннего строения звезды для проверки существующих эволюционных расчетов. Надо отметить, что именно первые определения данных параметров из наблюдений нескольких таких систем в середине прошлого века привели к пониманию того, что вещество звезд гораздо более сконцентрировано к их центру, чем это считалось в начале становления теории внутреннего строения звезд (Шварцшильд, 1958; Матис, 1967; Семенюк и Пачиньский, 1968).
Совокупное действие классического и релятивистского эффектов равно простой сумме: = д>г,т + б)п1. После надлежащего учета релятивистского эффекта мы можем определить константы кг и сравнить теорию с наблюдениями. Очевидно, что при таком сравнении мы должны получить согласие масс, радиусов и температур каждой из компонент с принятой теоретической моделью звезд при одном химическом составе и возрасте. К сожалению, химический состав из одних лишь фотометрических наблюдений определяется плохо, что вносит дополнительные трудности при выборе адекватной модели. Полного согласия между теорией и наблюдениями в каждом конкретном случае до последнего времени не было. Но наблюдающееся уменьшение расхождений (за счет уточнения теории и накопления наблюдательных данных) говорит о том, что мы находимся на верном пути. Количество параметров, которые необходимо учитывать при решении задачи, довольно велико, и не все поддаются точному учету. Например, появившиеся в начале 90-х годов новые данные о коэффициентах непрозрачности (Роджерс и Иглесиас, 1992) и, соответственно, измененные параметры кг (Кларет и Гименее, 1992) привели для некоторых систем либо к совпадению теоретических расчетов с наблюдениями, либо значительно уменьшили расхождение. Самым сложным для наблюдений параметром является на данный момент осевое вращение звезд. Имеются данные о том, что не всегда компоненты в двойной системе вращаются вокруг оси синхронно с движением по орбите; также могут быть не компланарны осевые и орбитальный моменты вращения. Все это может приводить как к замедлению, так и к ускорению апсидального вращения. Отсюда видно, что каждая отдельно взятая система должна подвергаться всестороннему исследованию и всегда надо помнить о том, что реальная картина может отличаться от модели, которой мы на данный момент пользуемся.
Подводя итог Введению, резюмируем, что в последнее время исследования релятивистских эффектов отошли на второй план и тот ажиотаж вокруг нескольких систем - DI Her, AS Cam, который привел даже к возникновению отличных от Эйнштейновской теорий гравитации (Моффат, 1984, 1989), прошел. Каждый конкретный случай либо нашел свое объяснение в рамках классической теории (Козырева и др., 1999), либо оставляет такую возможность для более искусных наблюдателей, вооруженных лучшей техникой, в будущем (Халиуллин и др., 1991; Гайнэн и Райзенбергер, 1989). Мы уже говорили, что согласие теории с наблюдениями существует статистически, и каждая вновь исследованная система несет в себе новую информацию. Общее количество исследованных звезд не превышает 100, а исследованных с точностью пригодной для расчетов и того меньше — порядка 40. Поэтому для наблюдателей, обладающих скромными аппаратурными возможностями, данная область представляется одной из наиболее перспективных для выполнения действительно качественного исследования, ценность которого со временем только возрастет.
На защиту выносятся следующие основные положения диссертации:
1. Высокоточные фотоэлектрические измерения затменных двойных систем а Северной Короны, GG Ориона, DI Геркулеса, V541 Лебедя, V577 Змееносца (более 9000 измерений). Для систем GG Ориона и V577 Змееносца фотоэлектрические наблюдения выполнены впервые в нашей работе.
2. Фотометрические и абсолютные элементы затменных двойных систем GG Ориона, V577 Змееносца, найденные из анализа их многоцветных кривых блеска итерационным
4) методом дифференциальных поправок.
3. Первое обнаружение и измерение апсидального вращения в системах а Северной Короны и GG Ориона. Уточнение скорости вращения линии апсид в системах V541 Лебедя и DI Геркулеса.
4. Обнаружение физической микропеременности V577 Змееносца, а Северной Короны и GG Ориона. Определение периода физической переменности блеска у V577 Змееносца. Установление стабильности этого периода на протяжении 3 лет наблюдений.
5. Обнаружение аномально большого межзвездного поглощения (Av= 4.1кпк’’) в направлении затменной двойной системы GG Ориона с компонентами, еще не достигшими, по-видимому, начальной главной последовательности.
Перечисленные пункты определяют также научную новизну результатов, полученных в диссертации. Исследования автора по этой теме начаты в 1986 г. и продолжаются по настоящее время. Основные результаты работы докладывались на семинарах отдела звездной астрофизики ГАИШ МГУ под руководством члена-корр. РАН А.М. Черепащука, на международной конференции по переменным звездам во Франции в 2002г.
Всего по теме диссертации было опубликовано 6 статей, три из них совместные. Общая постановка задач определялась моим научным руководителем, докт.физ.-мат.наук Х.Ф. Халиуллиным. В совместных работах с Х.Ф. Халиуллиным по исследованию систем GG Оп и V541 Cyg, автору принадлежит участие в постановке задачи, непосредственные наблюдения систем, первичная обработка результатов, определение фотометрических и абсолютных элементов GGOri, измерение параметров апсидального движения GGOri, уточнение параметров апсидального движения V541 Cyg, участие в обсуждении результатов. В совместной работе с С.А. Ходыкиным по DIHer, автору принадлежит большая часть наблюдений, а также участие в обработке и интерпретации результатов. В остальных работах, по системам а СгВ и V577 Oph, исследования проведены самостоятельно.
Основная работа по разработке и изготовлению аппаратуры для наблюдений была проделана также самостоятельно. На этапе исследования кривых реакции, наблюдений стандартных звезд для определения температурных зависимостей и редукции в систему Каталога Г АИШ, неоценимую помощь оказала Н.С. Волкова. При определении фотометрических параметров систем были использованы различные варианты программы, разработанной А.И. Халиуллиной и Х.Ф. Халиуллиным и реализующей модифицированный метод дифференциальных поправок. Множество вспомогательных программ для обработки электрофотометрических наблюдений, для поисков периодов были написаны автором самостоятельно. Часть наблюдений была выполнена с использованием электронных систем ввода в память ЭВМ и специальных программ для этих блоков, разработанных и отлаженных В.Г. Корниловым.
Основные результаты этой диссертации, посвященной фотометрическому исследованию затменных двойных звездных систем со значительным эксцентриситетом, следующие:
1. В четырехцветной фотометрической системе WBVRполучены фотоэлектрические кривые блеска четырех затменных систем: GGOri, DI Her, V541 Cyg, V577 Oph. Для двух из них, GGOri и V577 Oph, фотоэлектрические наблюдения выполнены впервые.
2. Для а СгВ получены фотоэлектрические наблюдения с использованием узкополосных интерференционных фильтров, центрированных на 7510 А и 4600 А.
3. Для вышеперечисленных систем из решения фотоэлектрических кривых блеска итерационным методом дифференциальных поправок определены фотометрические и абсолютные элементы. Для систем GG Ori и V577 Oph это сделано впервые.
4. Для затменных систем GG Ori, DI Her, V541 Cyg, а СгВ измерены скорости вращения линии апсид. Для систем а СгВ и GG Ori их удалось определить впервые. Для систем DI Her и V541 Cyg скорость апсидального вращения существенно уточнена.
5. Впервые обнаружена и исследована физическая переменность ряда объектов — V577Oph, GGOri, аСгВ. Возможно, мы подходим к тому значению точности фотоэлектрических наблюдений (< 0.01”), когда практически все звезды можно считать физически переменными.
Выражаю свою глубокую благодарность моему учителю и руководителю Х.Ф. Халиуллину, без постоянного внимания и участия которого данная работа никогда бы не была выполнена.
Глубоко благодарен Н.Н. Самусю, никогда не отказывавшему в просьбе просмотреть и отредактировать английские рукописи моих статей и который своим неустанным вниманием и советами помог в создании данной работы.
Глубоко признателен В.Г. Корнилову, который привил мне интерес к работе с приборами и помог преодолеть многие технические трудности при разработке и изготовлении наблюдательной аппаратуры.
Я очень признателен В.Г. Мошкалеву, А.В. Миронову и С.Ю. Шугарову которые познакомили меня с основными принципами и методами обработки фотоэлектрических наблюдений.
Приношу огромную благодарность Н.С. Волковой за помощь в наблюдениях.
Неоценимую помощь в оформлении диссертации оказал В.Н.Семенцов, за что я ему бесконечно признателен.
1. В четырехцветной фотометрической системе WBVRполучены фотоэлектрические кривые блеска четырех затменных систем: GGOri, DI Her, V541 Cyg, V577 Oph. Для двух из них, GGOri и V577 Oph, фотоэлектрические наблюдения выполнены впервые.
2. Для а СгВ получены фотоэлектрические наблюдения с использованием узкополосных интерференционных фильтров, центрированных на 7510 А и 4600 А.
3. Для вышеперечисленных систем из решения фотоэлектрических кривых блеска итерационным методом дифференциальных поправок определены фотометрические и абсолютные элементы. Для систем GG Ori и V577 Oph это сделано впервые.
4. Для затменных систем GG Ori, DI Her, V541 Cyg, а СгВ измерены скорости вращения линии апсид. Для систем а СгВ и GG Ori их удалось определить впервые. Для систем DI Her и V541 Cyg скорость апсидального вращения существенно уточнена.
5. Впервые обнаружена и исследована физическая переменность ряда объектов — V577Oph, GGOri, аСгВ. Возможно, мы подходим к тому значению точности фотоэлектрических наблюдений (< 0.01”), когда практически все звезды можно считать физически переменными.
Выражаю свою глубокую благодарность моему учителю и руководителю Х.Ф. Халиуллину, без постоянного внимания и участия которого данная работа никогда бы не была выполнена.
Глубоко благодарен Н.Н. Самусю, никогда не отказывавшему в просьбе просмотреть и отредактировать английские рукописи моих статей и который своим неустанным вниманием и советами помог в создании данной работы.
Глубоко признателен В.Г. Корнилову, который привил мне интерес к работе с приборами и помог преодолеть многие технические трудности при разработке и изготовлении наблюдательной аппаратуры.
Я очень признателен В.Г. Мошкалеву, А.В. Миронову и С.Ю. Шугарову которые познакомили меня с основными принципами и методами обработки фотоэлектрических наблюдений.
Приношу огромную благодарность Н.С. Волковой за помощь в наблюдениях.
Неоценимую помощь в оформлении диссертации оказал В.Н.Семенцов, за что я ему бесконечно признателен.
Подобные работы
- МНОГОЦВЕТНАЯ ЭЛЕКТРОФОТОМЕТРИЯ АЛЬФА СЕВЕРНОЙ КОРОНЫ, GG ОРИОНА, DI ГЕРКУЛЕСА, V541 ЛЕБЕДЯ, V577 ЗМЕЕНОСЦА - ЗАТМЕННЫХ ДВОЙНЫХ ЗВЕЗД СО ЗНАЧИТЕЛЬНЫМ ЭКСЦЕНТРИСИТЕТОМ
Диссертация , физика. Язык работы: Русский. Цена: 500 р. Год сдачи: 2003 - Многоцветная электрофотометрия Альфа Северной короны, GG Ориона, DI Геркулеса, V541 Лебедя, V577 Змееносца - затменных двойных звезд со значительным эксцентриситетом
Диссертации (РГБ), астрономия. Язык работы: Русский. Цена: 470 р. Год сдачи: 2003



